No. A-8-1E PJ :Mitigation of greenhouse gas emissions from agricultural lands by optimizing Nitrogen and carbon cycles

Theme: Cool Earth via Microbes in Agriculture

Organization: Tohoku University, The University of Tokyo, NARO. Subcontractors: Tokyo University of Agriculture and Technology, Iwate University, Obihiro University, Shizuoka University, Kyoto University, Tokyo Institute of Technology, AIST, Ibaraki University Ehime University, Ryukoku University, Nagoya University, FFPRI, National Institute for Environmental Studies, bitBiome, Inc. Contact: Kiwamu Minamisawa (E-mail: dsoil.moonshot@grp.tohoku.ac.jp)

I Soil structure (Soil aggregate)

Aggregates composed from micro-particles

II · V N₂O Recycling and Evaluation & modeling (Details \rightarrow Poster A-8-2, 4)

III DREAM (Details \rightarrow Poster A-8-3)

Goal: Reduce N_2O emissions by the combined use of molecular-targeted drugsand super active N_2O -detoxifying microorganisms

III-1 $\mathrm{N_2O}\xspace$ -detoxifying microorganism with super active NosZ

III-2 HAO-targeted nitrification inhibitor

Drug binding pocket

NirK-targeted denitrification inhibitor

III-3 Construction of carriers that mimic soil microstructure

Molecular-targeted drugs effective for uncultured soil microorganisms

Construction of carriers that mimic soil microstructure and evaluation of their microbial colonization performance. Development of microbial materials that enables N₂O-reducing microorganisms to function stably in soil.

Imaging system for N₂O and CH₄ mitigation

II-4. Construction of the rhizosphere cultivation system for designing and evaluating the soil ecosystem for N₂O recycling (Ryukoku Univ • Betsuyaku G/NaganoG)

Business models for GHG mitigation in agriculture

No. A-8-2E PJ :Mitigation of greenhouse gas emissions from agricultural lands by optimizing nitrogen and carbon cycles Theme: N₂O reduction by soybean rhizobia **Organization: Tohoku University, NARO** Contact: Kiwamu Minamisawa (E-mail: dsoil.moonshot@grp.tohoku.ac.jp)

Higher N₂O reduction

35

N₂O reduction by new *nosZ*++ *Bradyrhizobium* strain

cell/ml=7.93E+08

25

Bradyrhizobium strains (Bd or Bw) with nosZ++

Inoculation (10⁸ cell/g)

the new strain 1 could survive at $10^{6\sim7}$ CFU/g 1.E+09

For at least two months.

DIN Bacteria

No. A-8-3E

PJ: Mitigation of Greenhouse Gas Emissions from Agricultural Lands by Optimizing Nitrogen and Carbon Cycles

Organization: NARO (National Agriculture and Food Research Organization)

Contact: Hiroko AKIYAMA (ahiroko@affrc.go.jp)

Breeding new rice varieties with low CH₄ emissions

High throughput CH₄

flux measurement

CH₄ emissions form paddy rice fields : 10% of anthropogenic CH₄ emissions

- CH₄ production (light)
- Anaerobic decomposition of organic material by methanogens
- CH₄ oxidation (left)
- rhizosphere of rice roots, soilfloodwater interface by methanotrophs
- Mitigation options developed by NARO:
- Water management (prolonged midseason drainage)
- Straw management (incorporation after harvest, instead of before planting)

emission

18 **30 to 40 % lower CH**₄

Research strategies

Breeding new rice varieties with low CH4 emission

✓ Breeding low CH₄ rice

• Using genetic resource of rice of NARO, we will screen low CH₄ rice varieties and breed new commercial rice varieties with low CH4 emission

✓ Use of methanotrophic N₂ fixing bacteria (Tohoku Univ., Nagoya Univ.)

Genetic resource of rice (NARO)

Screening of low CH₄ rice varieties to breed new rice varieties

Breeding new commercial rice varieties with low CH₄ emission

- Development of high throughput CH₄ flux measurement by using mobile CH₄ analyzer (Picarro G4301)
- GC method: 45min, New method: 15min (1/3) **D**Screening of genetic resource of rice varieties with low

MOONSHOT

16

14

 CH_4 emission

Research strategies

Target 1: HAO

• We found low CH_4 emission varieties (genetic resources) by 30 to 40% compered to Koshihikari (a major Japanese variety).

Selection of low CH₄ varieties (genetic resources)

✓ *in silico* screening and metagenomic analysis

for structure-based drag design

 \rightarrow Breeding new commercial rice varieties with low CH₄ emissions by using genes controlling CH₄ emission

Development of new inhibitors to mitigate N_2O emissions

Background

 \checkmark About 60% of anthropogenic N₂O emit from agriculture

 \checkmark N₂O production process: nitrification & denitrification

✓ Develop new nitrification and denitrification inhibitors to reduce N₂O emission

have much higher activities (IC₅₀ < 4.0 μ M) than commercially available inhibitors.

Target 2 : NirK

High throughput screening

Obtained 108 HAO-targeted nitrification inhibitor candidates and 100 Nirk inhibitor candidates

No. A-8-4E

PJ: Mitigation of greenhouse gas emissions from agricultural lands by optimizing nitrogen and carbon cycles

Theme: N_2O recycling by N_2O -fixing bacteria

Organization: The Univ. of Tokyo, National Institute of Advanced Industrial Science and Technology Contact: Keishi SENOO (E-mail: asenoo@g.ecc.u-tokyo.ac.jp)

Background: Generated N₂O might be fixed by bacteria in paddy soil Purpose: Microbial transformation of N₂O to NH₄+ for crop production

I. N₂O fixing bacteria in paddy soils

- Detected the reduction of N_2O gas
- ¹⁵N content of the soils were currently analyzed using IRMS

Future plan

 Quantification of fixed N₂O • Analysis of factors that enhance N₂O fixing activity

Is N₂O fixation driven by the different groups of microorganisms?

NEDO

Future plan

- Analysis of paddy soil microcosm using ¹⁵N₂O
- Verification of ubiquity by analysis using paddy soils from various regions