

Innovative Circular Technologies for Harmful Nitrogen Compounds/ To Solve Planetary Boundary Issues

Theme 2. Recycling nitrogen compounds in wastewater to ammonia resource Theme 2-1. R&D on microbial conversion of nitrogen compounds to ammonia R&D of anaerobic membrane bioreactor (AnMBR) capable of efficient treatment under high ammonium concentrations

Presenter : Prof. Michihiko Ike (Osaka University) PM : Dr. KAWAMOTO Tohru , National Institute of Advanced Industrial Science and Technology (AIST) Implementing organizations : National Institute of Advanced Industrial Science and Technology (AIST), The University of Tokyo, Waseda University, Tokyo University of Agriculture and Technology, Kobe University, Osaka University, Yamaguchi University, Kyowa,Hakko Bio Co., Ltd., ASTOM Corporation, Toyobo Co., Ltd., FUSO Corporation, Ube Industries, Ltd,

Position in the Project

Target of Theme 2 for FY2029 : Pilot-scale demonstration($5\sim$ 15 m³/d) of recovery and condensation of ammonium from wastewater.

Position of Osaka, Hiroshima and Kobe Univ. : R&D of AnMBR capable of efficient treatment under high ammonium concentrations.

Target of Osaka, Hiroshima and Kobe Univ. for FY2029 : Construction and demonstration of a pilot-scale AnMBR for ammonium recovery using actual wastewater.

Details & Items of R&D

V.

R&D of AnMBR capable of efficiently converting organic carbon and nitrogen in the concentrated wastewater to CH_4 and NH_4^+ under high nitrogen concentrations

R&D Items

- Development of bioaugmentation technology of highly NH₄+-tolerant microbial consortia (Osaka Univ.)
- Construction of highly NH₄+-tolerant microbial consortia (Hiroshima Univ.)
- Establishment of efficient AnMBR operating methods (Kobe Univ.)

Achievement (1) Confirmation of NH₄+/NaCl inhibition levels in anaerobic digestion (Osaka Univ.)

Testing NH₄⁺ and NaCl tolerance of mesophilic anaerobic digestion
 → Confirmation of inhibitory levels of NH₄⁺ and NaCl to CH₄ production

Examples of the relationship between CH₄ production and NH₄⁺ (left) or NaCl (right) concentration in mesophilic anaerobic digestion

Achievement (2) Conception of bioaugmentation strategy (Osaka Univ.)

V.

Bioaugmentation strategy to reinforce

the NH_4^+ and NaCl tolerance

- Identification of vulnerable microbial populations and metabolic pathways
- Conception of bioaugmentation strategy to reinforce the NH₄⁺ tolerance

Relationship between NH₄⁺/NaCl conc. and archaeal composition

Identification of vulnerable microbial populations
 → Clarification of pathways to be reinforced

Achievement (3) Construction of highly NH₄⁺ tolerant microbial consortia (Hiroshima Univ.)

 Enrichment of highly NH₄⁺- and NaCl-tolerant microbes from marine sediments and anaerobic sludge as the potential microbial sources

Construction of highly NH₄⁺- and NaCl-tolerant microbial consortia

Achievement (4) Development of efficient AnMBR (Kobe Univ.)

- Designing three different types of AnMBR
- Efficient treatment at 3 d of hydraulic retention time (HRT)

Three AnMBR design (Left: inner-submerged type, center: Cross-flow type, right: outer-submerged type)

N

Position in the project

R&D of AnMBR capable of efficient treatment under high NH₄⁺ concentrations.

Target for FY2029

Construction and demonstration of a pilot-scale AnMBR for NH_4^+ recovery using actual wastewater.

R&D items

- Development of bioaugmentation technology using highly NH₄+-tolerant microbial consortia (Osaka Univ.)
- Construction of highly NH₄+-tolerant microbial consortia (Hiroshima Univ.)
- Establishment of efficient AnMBR operating methods (Kobe Univ.)

Achievement 1 & 2 (Osaka Univ.)

- Confirmation of inhibitory NH₄⁺ and NaCl levels to CH₄ production
- Identification of vulnerable microbial populations and metabolic pathways
- Conception of bioaugmentation strategy to reinforce the NH₄⁺ tolerance

Achievement 3 (Hiroshima Univ.)

Enrichment of highly NH₄⁺- and NaCI-tolerant microbes

Achievement 4 (Kobe Univ.)

- Designing three different types of AnMBR
- Efficient treatment at 3 d of HRT

