Development of Global CO₂ Recycling Technology Towards "Beyond-Zero" Emissions [CO₂ conversion research unit] Development of a thermal conversion unit for production of C1 chemicals from CO₂ mixed gas obtained from DAC ### Presenter: Prof. Ken-ichi SHIMIZU (Hokkaido Univ., Institute for Catalysis) PM: Prof. Shigenori FUJIKAWA Kyushu Univ. **International Institute for Carbon Neutral Energy Research** #### **PJ Institutes:** Kyushu Univ., Kumamoto Univ., Hokkaido Univ., Kagoshima Univ., Osaka Inst. Tech., Univ. Illinois at Urbana Champaign, NanoMembrane Tech. Inc. Q1: How to convert CO₂ to fuel without electricity? Q2: The molecule X can be converted into any fuels. What is X? Q3: Is it possible to hydrogenate CO_2 in the presence of O_2 ? $(H_2+ 1/2O_2 \rightarrow H_2O)$ Q4: Which is more reactive with H₂, O₂ or CO₂? Q5: How to convert CO_2/H_2 to fuels without H_2+O_2 reaction? $$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$ $Na_2CO_3 + H_2 \rightarrow 2NaOH + CO$ ## Continuous CO₂ adsorption-hydrogenation system Cat.: 300 mg T: 350°C F: 100 mL/min gas1: <mark>0.5%CO₂/10%O₂/N₂</mark> gas2: $H_2/100\%$ period: $\frac{30 \text{ s}}{}$ A: $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$ B: $Na_2CO_3 + H_2 \rightarrow 2NaOH + CO$ ### Durability test of thermochemical CO₂ conversion unit A new process to convert low-concentration CO₂ in the air to CO Developed a DAC-U catalytic process that converts CO₂/O₂/N₂ generated by DAC into CH₄ and CO "directly" and "in one-stage"