

Development of Global CO₂ Recycling Technology Towards "Beyond-Zero" Emissions

[CO₂ conversion research unit]

Development of a thermal conversion unit for production of C1 chemicals from CO₂ mixed gas obtained from DAC

Presenter: Prof. Ken-ichi SHIMIZU

(Hokkaido Univ., Institute for Catalysis)

PM: Prof. Shigenori FUJIKAWA Kyushu Univ. **International Institute for Carbon Neutral Energy Research**

PJ Institutes:

Kyushu Univ., Kumamoto Univ., Hokkaido Univ., Kagoshima Univ., Osaka Inst. Tech., Univ. Illinois at Urbana Champaign, NanoMembrane Tech. Inc. Q1: How to convert CO₂ to fuel without electricity?

Q2: The molecule X can be converted into any fuels. What is X?

Q3: Is it possible to hydrogenate CO_2 in the presence of O_2 ? $(H_2+ 1/2O_2 \rightarrow H_2O)$

Q4: Which is more reactive with H₂, O₂ or CO₂?

Q5: How to convert CO_2/H_2 to fuels without H_2+O_2 reaction?

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

 $Na_2CO_3 + H_2 \rightarrow 2NaOH + CO$

Continuous CO₂ adsorption-hydrogenation system

Cat.: 300 mg T: 350°C

F: 100 mL/min

gas1: <mark>0.5%CO₂/10%O₂/N₂</mark>

gas2: $H_2/100\%$ period: $\frac{30 \text{ s}}{}$

A: $2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$

B: $Na_2CO_3 + H_2 \rightarrow 2NaOH + CO$

Durability test of thermochemical CO₂ conversion unit

A new process to convert low-concentration CO₂ in the air to CO

Developed a DAC-U catalytic process that converts CO₂/O₂/N₂ generated by DAC into CH₄ and CO "directly" and "in one-stage"

