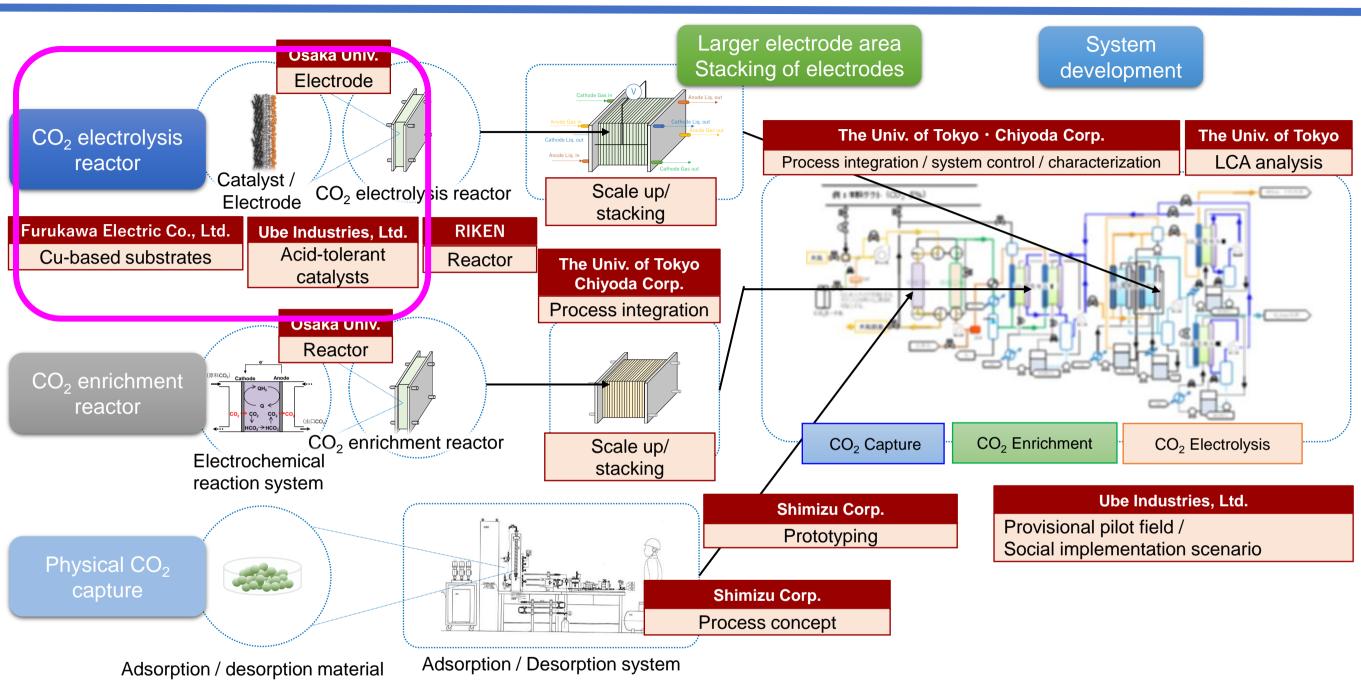


Integrated Electrochemical Systems for Scalable CO₂ Conversion to Chemical Feedstocks

Presenter : YAMADA Atsushi (UBE Industries, Ltd.) PM : Dr. SUGIYAMA Masakazu, The University of Tokyo Implementing organizations : The University of Tokyo, Osaka University, Institute of Physical and Chemical Research (RIKEN), Ube Industries, Ltd., Shimizu Corporation, Chiyoda Corporation, Furukawa Electric Co., Ltd.

Business domain / strength

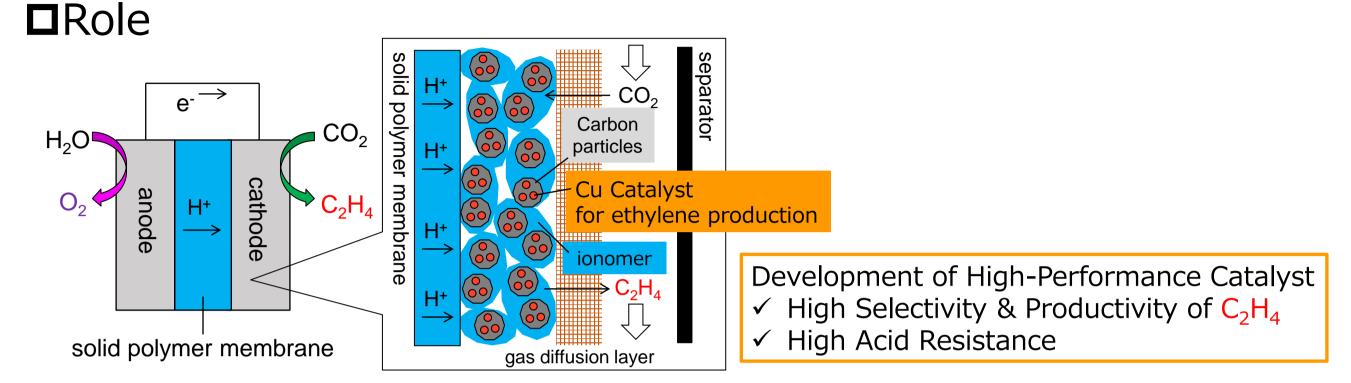
Development of chemical manufacturing business originating from coal mining Possessing unique synthesis technologies based on catalytic chemistry and organic synthesis


Chemicals 42% of net sales ¥ 259.3 billion	 Nylon raw materials and resin Synthetic rubber Industrial chemicals Specialty products Battery materials 	 Fine chemicals Drug discovery and co-development Contract manufacturing
Cement & Construction Materials 46% of net sales ¥282.8billion	 Cement, ready-mixed concrete Building materials Calcia, magnesia Coal storage/sales IPP/Power business 	
Machinery 12% of net sales ¥78.7 billion	 Molding machines (Injection molding machines, die-casting machines) Industrial machinery Bridge 	

Role in this PJ

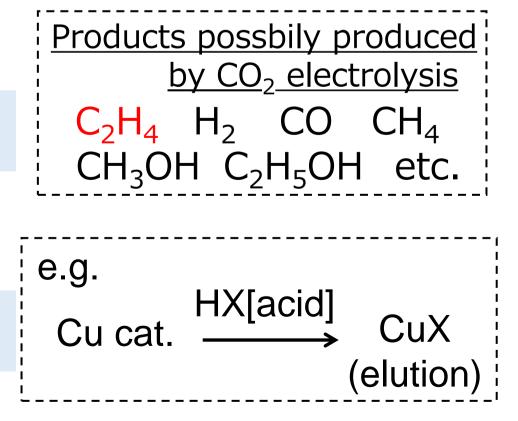
- Development of high-performance electrode catalyst based on synthesis technologies.
- Scale-up for catalyst manufacturing.

Project organization and goals


MOONSHOT RELATE I DEVELOPMENT PROCESS

<u>Goals</u>

- Development of an integrated system that electrochemically converts CO₂ captured from an atmospheric air to valuable chemical substances
- Conducting a life cycle assessment on a pilot-scale plant to evaluate the effectiveness as a measure against global warming


Research Subject

1 Selectivity & Productivity of C₂H₄

High faraday efficiency and High current density for ethylene (C_2H_4) production should be achieved.

2 Catalyst Lifetime (Acid Resistance)

It is necessary to suppress the elution of Cu catalyst by acid.

DFY2024

- •Selectivity (Faraday Efficiency): >50%
- Productivity (Current Density): >200 mA/cm²
- Catalyst Lifetime : >1,000 hours

DFY2027

- •Selectivity (Faraday Efficiency): >80%
- Productivity (Current Density): >200 mA/cm²
- •Catalyst Lifetime : >5,000 hours

Achievement

	Plan ①	Plan 2
Catalyst Design	Image: Current soft acid, CO2: hard acid Image: Current soft base Image: Current soft base	Neutralization of acid Immobilization of Cu complex Introducing Nitrogen to catalyst support (carbon black)
Expected Effects	 Improvement of acid resistance Stabilization of Cu complex with soft base Enhancement of CO₂ reduction activity CO₂ adsorption to hard base point Improvement of ethylene selectivity Binuclear Cu structure promotes C-C bond formation 	 Immobilization of Cu complex Nitrogen atom coordination to Cu complex Promotion of CO₂ reduction CO₂ adsorption to nitrogen atom Suppression of acid contact to Cu complex Local neutralization of acid
Progress Results	 Several Cu complexes based on the catalyst design were synthesized and characterized. CO₂ electrolysis performance of synthesized Cu complex is under investigation. 	• Co ₂ electrolysis performance using N-doped carbon black is under investigation.

