

Integrated Electrochemical Systems for Scalable CO₂ Conversion to Chemical Feedstocks

Presenter FUJII Katsushi (RIKEN) PM : Dr. SUGIYAMA Masakazu , The University of Tokyo Implementing organizations : The University of Tokyo, Osaka University, Institute of Physical and Chemical Research (RIKEN), Ube Industries, Ltd., Shimizu Corporation, Chiyoda Corporation, Furukawa Electric Co., Ltd.

Project organization and goals

MOONSHOT RELACIÓ DEVELOPMENT PROCESSA

<u>Goals</u>

- Development of an integrated system that electrochemically converts CO₂ captured from an atmospheric air to valuable chemical substances
- Conducting a life cycle assessment on a pilot-scale plant to evaluate the effectiveness as a measure against global warming

RIKEN Research Items

- Reduction from CO2 to C2H4 requires not only a catalyst but also an electrochemical reactor.
- > The presence of thick electrolyte limit the reduction in operating voltage of GDE-type reactors.
- Providing "Zero Gap Reactor" as the ultimate reactor.

Industrially usable "Zero Gap Reactor" is developed using "Membrane Electrode Assembly (MEA)" with polymer electrolyte, applying the research results of the electrochemical catalyst from CO_2 to C_2H_4 , and the mesoporous structure for "Gas Diffusion Electrode (GDE)".

IEDO

K=N

Zero-Gap Reactor

Gas Diffusion Electrode

>> Since voltage difference exists at hetero-interfaces, Small Gap Reactor and Zero Gap Reactor are essentially different.

4

Target

D2024

Realization of (1) voltage: 2.5 V, (2) current density > 200 mA/cm², (3) faradaic efficiency for CO_2 reduction > 50%, using non-precious metal anode catalyst.

D2027

Realization of (1) voltage: 2.5 V, (2) current density: 200 mA/cm², (3) faradaic efficiency for C_2H_4 : 80%, under the hybridization of CO_2 enrichment devices and CO_2 reduction reactors. Find the guideline for the lifetime of electrode over 1000 hrs.

Results

Using the findings of high-speed water electrolysis (ca. 2 A/cm²)

- Minimize the contact electric resistance
- Structure for the rapid supply of precursor and removal of reactant at reaction site
- Structure to realize uniform reaction condition over the electrode surface

Results

Current density dependence of contact pressure

Change in electrode structure -> Change in Faradaic efficiency

When the contacts among collecting plate, PTL, electrode, and membrane are ununiform, large over-voltage was observed at the beginning of the reaction even at the low current density conditions.

 \Rightarrow Not only large overpotential, but <u>low faradaic efficiency of CO₂ was observed</u>.

The problem never exists in water electrolysis.

Results

Porous Transport Layer (PTL) dependence for current density

 \rightarrow Importance of CO₂ gas supply channel

Since water electrolyzer has no gas supply for the cathode, fast removal of product H_2 is enough for the high performance of H_2 formation.

⇒ For CO₂ reduction, <u>CO₂ supply from the back surface of the cathode affects the</u> <u>faradaic efficiency of CO₂ reduction</u>.

Since trench at the electric plate cannot supply electricity to the reaction field, effective reaction area decreases with the increase in trench area.

 \Rightarrow Trade-off between electron supply and CO₂ supply \Rightarrow Optimization is mandatory.

