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Goals
B Development of an integrated system that electrochemically converts CO, captured from an atmospheric air to valuable

chemical substances
B Conducting a life cycle assessment on a pilot-scale plant to evaluate the effectiveness as a measure against global

warming
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» Reduction from CO2 to C2H4 requires not only a catalyst but also an electrochemical reactor.
» The presence of thick electrolyte limit the reduction in operating voltage of GDE-type reactors.

» Providing “Zero Gap Reactor” as the ultimate reactor.

Industrially usable “Zero Gap Reactor” is developed using “Membrane Electrode Assembly (MEA)” with polymer electrolyte,
applying the research results of the electrochemical catalyst from CO, to C,H,, and the mesoporous structure for “Gas
Diffusion Electrode (GDE)”.
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>> Since voltage difference exists at hetero-interfaces, Small Gap Reactor and Zero Gap Reactor are essentially different.
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Realization of (1) voltage: 2.5V, (2) current density > 200 mA/cm?,
(3) faradaic efficiency for CO, reduction > 50%, using non-precious
metal anode catalyst.
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Realization of (1) voltage: 2.5V, (2) current density: 200 mA/cm?,
(3) faradaic efficiency for C,H,: 80%, under the hybridization of
CO, enrichment devices and CO, reduction reactors.

Find the guideline for the lifetime of electrode over 1000 hrs.
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OUsing the findings of high-speed water electrolysis (ca. 2 A/cm?)

® Minimize the contact electric resistance
® Structure for the rapid supply of precursor and removal of reactant at reaction site
® Structure to realize uniform reaction condition over the electrode surface

Structure dependence of porous
transport layer (PTL) for current density
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[ICurrent density dependence of contact pressure
Change in electrode structure =» Change in Faradaic efficiency
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When the contacts among collecting plate, PTL, electrode, and membrane are
ununiform, large over-voltage was observed at the beginning of the reaction
even at the low current density conditions.

= Not only large overpotential, but low faradaic efficiency of CO, was observed.

The problem never exists in water electrolysis.
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CdPorous Transport Layer (PTL) dependence for current density
=» Importance of CO, gas supply channel
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Since water electrolyzer has no gas supply for the cathode, fast removal of product
H, is enough for the high performance of H, formation.

= For CO, reduction, CO, supply from the back surface of the cathode affects the
faradaic efficiency of COZ_ reduction.

Since trench at the electric plate cannot supply electricity to the reaction field, effective reaction
area decreases with the increase in trench area.

= Trade-off between electron supply and CO, supply = Optimization is mandatory.
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