

Development of a Bioprocess That Uses Electrical Energy to Fix Atmospheric CO₂

 Presenter : Dr. KATO Souichiro, National Institute of Advanced Industrial Science and Technology (AIST)
PM : Dr. KATO Souichiro, National Institute of Advanced Industrial Science and Technology (AIST)
Implementing organizations : National Institute of Advanced Industrial Science and Technology (AIST), Tokyo Institute of Technology, Nagoya University

Summary of our project

Development of an innovative biotechnology for negative emission
Utilizing electric energy to convert atmospheric CO₂ into organic matters
More than 50 times more efficiently than plants (>50 kg-CO₂/m²/year)

"superbugs"

that use electric energy, uptake & concentrate atmospheric CO₂, and fix CO₂ with high efficiency.

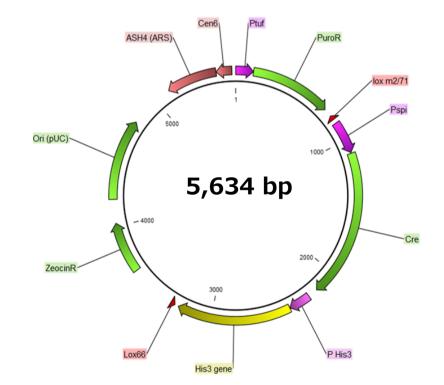
"gas-phase reaction process" that can effectively supply electricity, nutrients

Development of large-scale genome manipulation technology

Abilities of CO₂ uptake and concentration

Presenter: Dr. Kato Souichiro (National Institute of Advanced Industrial Science and Technology (AIST))

PI: Dr. Kato Souichiro

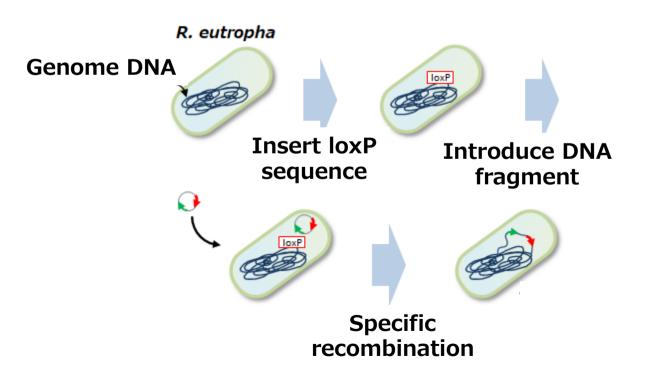

Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)

Implementing organizations: Assoc. Prof. ASHIDA Hiroki

Graduate School of Human Development and Environment, Kobe University

Genome manipulation (AIST)

- Target : Construction of large-scale genome manipulation technologies for Ralstonia
- 1. Large-scale DNA introduction technologies for *Ralstonia*
- Achievements:
- \cdot Vectors were designed
- $\boldsymbol{\cdot}\mathsf{DNA}$ introducing methods were examined

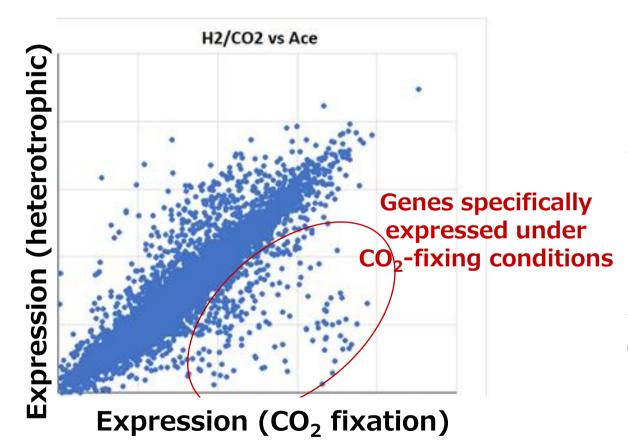


Designed DNA vector based on yeast artificial chromosome (YAC)

On-going works:

Methods for gene insertion into the genome

(Cre-Lox system)


Summary of Cre-Lox system

Genome manipulation (AIST)

2. Development of promoter libraries

Achievements:

- •Expression analysis under CO₂-fixing conditions
- Specify candidate promoters

On-going works:

- Verification of candidate promoters
- Develop promoter libraries

	Expression level			Fold change		
	H2/CO2	Ace	Fru	H2/Ace	H2/Fru	
cbb_C2	7581	21	168	368	45	Chr_2のcbb
hox_pla	2138	11	23	189	95	NAD-reducing hydrogenase
selB_C2	647	5	18	125	35	
ttt_C2	362	2	4	159	88	tripartite tricarboxylate transporter substrate binding protein

Candidates for promoters specifically working under CO₂-fixing conditions

Results of gene expression analysis (CO₂-fixing and heterotrophic conditions)

Ability of CO₂ concentration (Kobe univ.)

■ Target : Introduce genes for CO₂ uptake and concentration into *Ralstonia*

■ 1. Introduce CO₂-fixing enzymes (Rubisco)

ΔΔcbbLS cbbLSP-1 cbbLSP-2

Strains with

Rubisco-overexpression

Achievements:

200

180

160

140

120

100

80

60

40

20

0

WT

RuBisCO activity (nmol/min/mg)

•Construct Rubisco-overexpression strains that showed higher Rubisco activities & growth On-going works:

18

20

Growth time (hours)

24

26

28

•Further improvement by co-introduction of CO₂ uptake & concentrating systems

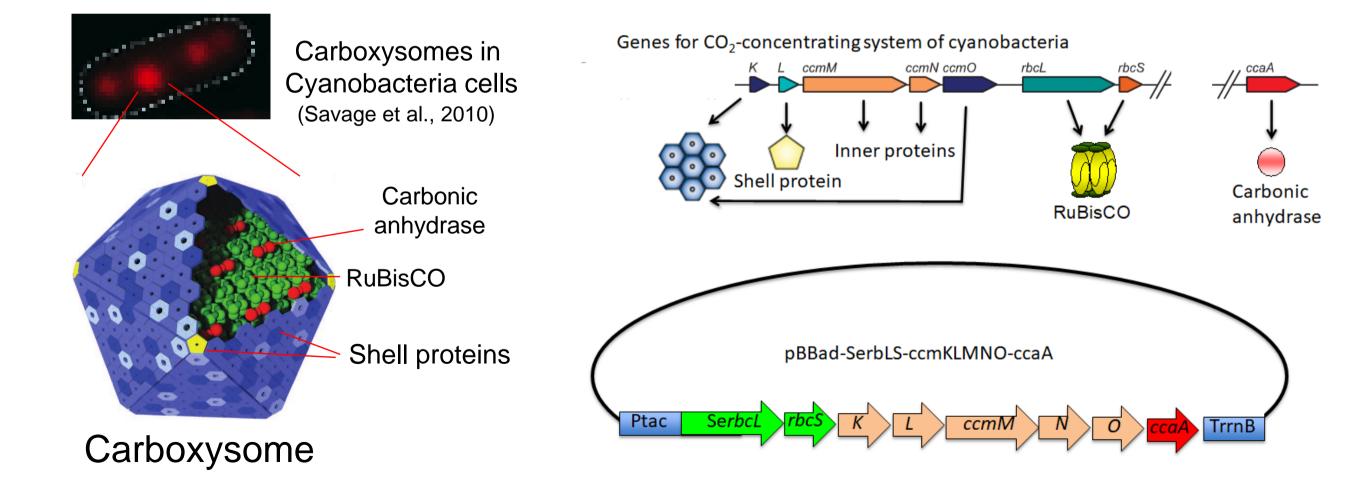
Rubisco activity Growth of Ralstonia

2

0

0

8


Ability of CO₂ concentration (Kobe univ.)

- Target : Introduce genes for CO₂ uptake and concentration into *Ralstonia*
- 2. Introduction of CO₂-uptake and concentrating systems

Achievements:

•Construct vectors for CO_2 transporters and carboxysome genes derived from cyanobacteria

- On-going works:
- •Introduction into *Ralstonia* to improve its CO_2 -fixing abilities

