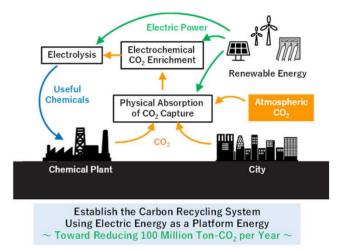


# Integrated Electrochemical Systems for Scalable CO<sub>2</sub> Conversion to Chemical Feedstocks


Project Manager (PM) : SUGIYAMA Masakazu, The University of Tokyo

Summary

We will develop an integrated system that recovers and enriches dilute CO<sub>2</sub> from the atmosphere using physical and electrochemical methods and converts it to a resource utilizing an electrochemical process powered by renewable energy.

Targeting dilute  $CO_2$  in the atmosphere as an ultimate goal, we will establish a flexible and scalable system that is distinct from thermochemical plants, which can be distributed on a small scale by taking advantage of the characteristics of electrochemical processes. This will create a technology that can be applied to a wide range of  $CO_2$  emissions sources, from indoor air in buildings to factory exhaust.

The integrated system consists of two main technologies:  $CO_2$  capture and enrichment by both physical and electrochemical methods, and  $CO_2$  reduction to produce useful chemical feedstock (e.g., ethylene). In particular, we will develop core technologies for  $CO_2$  separation and enrichment through electrochemical  $CO_2$  dissolution control and highly efficient and highly selective  $CO_2$  electrochemical reduction through innovative catalysts and reactors. We will integrate these technologies into a unified process and promote plant demonstrations with the aim of socially implementing an innovative  $CO_2$  conversion system to resources.



## KPI

#### FY2022

Develop/verify devices to demonstrate that  $CO_2$  emissions can be reduced to between +1.0 and +1.5 tons per ton of ethylene produced. (Note 1, Reference)

#### FY2024

Examine the feasibility of a laboratory-scale system and demonstrate that  $CO_2$  emissions can be reduced to between +0.5 and +1.0 tons per ton of ethylene produced, and that continuous operation for 1000 hours can be achieved.

### FY2029

A pilot plant will be constructed to achieve carbon negativity, i.e.,  $CO_2$  emissions of less than -0.5 tons per ton of ethylene produced. Also, achieve 5000 hours of continuous operation.

Note 1) Includes  $CO_2$  emissions during equipment manufacturing (estimated based on technology as of July 2021). (Reference) Conventional technologies that use fossil resources as raw materials emit several tons of  $CO_2$  per ton of ethylene produced.

#### Implementation

The University of Tokyo, Osaka University, Institute of Physical and Chemical Research (RIKEN), Ube Industries, Ltd., Shimizu Corporation, Chiyoda Corporation, Furukawa Electric Co., Ltd.

