

Research and Development Toward Saving Energy for Direct Air Capture With Available Cold Energy

Nagoya University, TOHO GAS, Tokyo University of Science, JGC, The University of Tokyo, Chukyo University

PM NORINAGA, Koyo Nagoya University

NEDO

東邦ガス

Our challenge

Research and Development Toward Saving Energy for Direct Air Capture **with Available Cold Energy**

 Capturing CO2 Through

 Data and Solidification

 Reserve and Development Toward Saving Energy

 Direct Arc Capture With Available Cold Energy

 Dr. NORINAGA Koyo, Project Manager (Nagoya University)

NEDO Moonshot Goal4/Capturing CO₂ Through Cooling and Solidification / Dr. NORINAGA Koyo

Cryo-DAC® our team

AGOYA UNIVERSITY

Cryo-DAC[®] concept design High-performance amine development

TOHO GAS

Process simulation for cost and energy analysis

TOKYO UNIVERSITY OF SCIENCE

Material selection and analysis

Cryo-DAC® plant design and construction

THE UNIVERSITY OF TOKYO

Exergy-based process analysis Sensing device for stable operation

CHUKYO UNIVERSITY Environmental and economic analysis

DAC with LNG coldness Japan imports 75 millions tons of LNG in 2021

Cryo-DAC[®]

A pressure swing amine process driven by the cryogenic pumping with LNG cold

Cryo-DAC[®] liquid absorbent

 α [mol-CO₂/mol-amine]

Screening good amine/solvent mixtures by high throughput CO₂ solubility measurements

Cryo-DAC[®] process simulation

Energy evaluation of DAC process by chemical absorption utilizing unused cold energy of LNG

(Toho Gas) *(Cor)Nakayama Yuki, (Cor)Kojima Misako, (Cor)Masuda Soichiro, (Cor)Tanaka Youichi, (Cor)Yabushita Masataka, (Cor)Koizumi Masahisa, (Nagoya U.) (Reg)Hirayama Mikiro, (Reg)Machida Hiroshi, (Reg)Umeda Yoshito, (Reg) Norinaga Koyo

SCEJ 87th Annual Meeting

SCEJ

The Society of Chemical Engineers, Japar

Cryo-DAC[®] thermal energy requirement

※MEA = monoethanolamine

N120

8

Fasihi, M et al., J. Clean. Prod., 224, 957 (2019). Kiani, A et al., Front. Energy Res., 8, 92 (2020).

(Toho Gas) *(Cor)Nakayama Yuki, (Cor)Kojima Misako, (Cor)Masuda Soichiro, (Cor)Tanaka Youichi, (Cor)Yabushita Masataka, (Cor)Kojima Misako, (C

Energy saving by LNG cold can make cost reduction

Absorber with low P drop

Kinetics of dry ice formation

Cryo-DAC® material

Fatigue tests (>10 cycles, 25 years operation) in liquid nitrogen proved SUS 304 to be a candidate material for the sublimation tank

Cryo-DAC® sensor

Integrity monitoringwith wireless sensor

Cryo-DAC® plant design

JGC JGC HOLDINGS CORPORATION

Cryo-DAC[®] Roadmap EXPO 2025 **Cryo-DAC** 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 Start Proof of concept NOW Design, construction, operation of a bench-scale plant Design, construction, operation of a pilot-scale plant

Cryo-DAC® LCA

 $\times 1$ CO₂ emission factor : 0.506 kg/kWh (2020)

3 Aspen Economic Analyzer / National Institute for Environmental Studies 3 EID database

Cryo-DAC[®] perspectives

LNG import share % (2022) Energy Institute Statistical Review of World Energy 2023

Japan	18.1
China	17.2
South Korea	11.8
India	5.2
Taiwan	5.1
Total Europe	31.4

 LH_2 cold

Shell LNG Outlook 2022

Energy security, emissions and economic growth in Asia to drive future LNG demand

CO₂ capture from LNGCC power plant

Machida et al.. ACS Sustainable Chem. Eng. 2021, DOI: 10.1021/acssuschemeng.1c05892).

CAS Join ACS ACS C&EN f 💿 😏 TOPICS - MAGAZINE - COLLECTIONS - VIDEOS JOBS Q **GREENHOUSE GASES** Cold energy stored in liquefied natural gas could help capture carbon dioxide The often-wasted energy could lower the energy required for carbon capture by cooling CO₂ into dry ice

by XiaoZhi Lim, special to C&EN

January 4, 2022

iquefied natural gas (LNG), exported widely as fuel, contains significant embedded energy beyond its burnable chemical energy. The energy that was used to cool and compress it into liquid form, known as "cold energy," is an untapped resource. Researchers have proposed using LNG's cold energy to cool carbon dioxide (CO2) into dry ice as part of a carbon capture process. In doing so, they hope to lower the energy required for carbon capture; however, it is still unclear how much energy could be saved (ACS Sustainable Chem. Eng. 2021, DOI: 10.1021/acssuschemeng.1c05892).

Japan is one of the top importers of LNG, says Koyo Norinaga of Nagoya University. After the LNG arrives on tanker ships, it gets fed into the local gas pipeline network, and the coldness generated when it expands into a gas is used for refrigeration at the seaport. But

Featured in C&EN news

🔒 Log in

Cryo-DAC[®] 7 goals

Direct Air Capture with Liquid Sorbent and LNG Cold

- Develop good sorbents
- 2. Pursue an efficient use of LNG coldness
- 3. Find suitable materials for construction
- 4. Develop sensing device for stable operation
- 5. Design & construct bench / pilot / commercial plants
- 6. Draw scenarios pleasing to our society
- 7. Offer a unique DAC to the world

https://cryodac.my.canva.site/home