

NEDO-SGTECH Project

Survey research on the status and policy of smart grid related to the Virtual Power Plants (VPP) technology in Thailand

"Electricity Sector Transformation: Virtual Power Plants" The Athenee Hotel Bangkok Friday 19 March 2021

Contents

▲ 19 March 2021

Project Introduction

State of the problems
Objectives
Methodologies

Data survey and current status of VPP technology

VPP definition/concepts
Policy, market, and Business model of VPP
Real world cases of VPP implementation
Smart Grid in Thailand

Data analysis

 Trends, directions, and policies supporting smart grid related to VPP technology using Delphi Technique

 $\ensuremath{\circ}$ Business models, limitations and opportunities of VPP technology

Conclusion and opportunities

THE RESEARCH PROBLEM AND ITS SIGNIFICANCE

Master Plan on Thailand's Smart Grid Development 2015 – 2036

Encouragement of sufficient electricity provision, efficiency, sustainable, excellent service quality and highest benefit to the country.

VISION

The development of the driving plan is covered :

- Energy management system (EMS),
- Pricing & incentive design & demand response,
- Microgrid,
- Energy storage system (ESS)
- Wind & Solar Power Forecast

Strategy for the development of smart grid network system

Energy Policy and Planning Office MINISTRY OF ENERGY

-3-

Master Plan on Thailand's Smart Grid Development 2015 – 2036

http://frost-apac.com/BDS/whitepaper/Bosch_WP.pdf, Virtual Power Plants (VPPs) for Smart Energy Frost & Sullivan

Energy Policy and Planning Office MINISTRY OF ENERGY

• Objectives

สมาร์ทกริด โทยแลนด์

Renewable Energy

Smart Grid

1) To survey the status and policy of smart grid related to the VPP technology in Thailand and other countries

II (NEDO

- 2) To analyze the different perspective on VPP from the Thai government, agencies and private companies in Thailand
- 3) To disseminate the results/recommendation gained from the study to the interested stakeholders

METHODOLOGY

Data analysis

 \odot Trends, directions, and policies supporting smart grid policy related to VPP technology

Step

3

- Choose a Facilitator
- Identify the Experts
- Define the Problem
- Round One Questions
- Round Two Questions
- **Round Three Questions**
- Summary of data analysis

^{*}Participate > 17 experts

:: P. Asmus, *Electr. J.*, 23 (10), 2010 ::

** VPP rely upon software systems to remotely and automatically dispatch and optimize generation or demand side or storage resources in a single, secure web-connected system.

:: G. Plancke and A. Delnooz ::

** A portfolio of DERs, which are connected by a control system based on information and communication technology (ICT). The VPP acts as a single visible entity in the power system, is always grid-tied and can be either static or dynamic.

¹⁾ P. Asmus, *Electr. J.*, 23 (10), 2010 .

²⁾ G. Plancke and A. Delnooz, Virtual power plants: Definition, applications and barriers to the implementation in the distribution system. 12th International Conference on the European Energy Market (EEM). 2015.

VPP DEFINITION/CONCEPTS

- \diamond New flexibility approaches based on DERs, ESS, and DR (negawatt) -> <u>VPP</u>
- To aggregate and control small-and medium scale DERs (hydro, wind, PV and other DG units: BESS, EV, etc.)
- ♦ To applies ICT, IoT and AI technologies
- \diamond To solve energy security problems in both the production, consumer and Prosumer.
- It controls them as one, like a single plant, a VPP via the same <u>VPP Cloud Platform</u>.

NÈDO

-17-

POLICY, MARKET, AND BUSINESS MODEL OF VPP

Country	Company	Business outline	Feature
Germany	Next Kraftwerke	 Aggregate DERs of biomass, CHP, DR, PV, wind, etc. to provide reserve capacity for balancing market and sell it on the spot market. 	 ✓ Total number of generators: 3,820 ✓ VPP capacity: 2,452MW
Germany	Energy2Market	 Aggregate generation by PV, wind, biomass, hydro etc. to sell the power on the spot electricity market and participate in the reserve market. 	✓ Total number of generators: More than 3,000MW
	Statkraft energy & meteo	 Fully commercial energy market VPP Aggregate DR and emergency generators at customer's premise and participate in FCR, STOR :Short Term Operating Reserve, etc. 	 ✓ 1 GW DERs ✓ Real time and trade power on the who lesale market
US	Edison, SunPower and Sunverge	 Utility owner ship Ancillary services, DR program Capacity markets and wholesale markets. 	 ✓ Approx. 300 homes ✓ 7-9 kW PV rooftop + 6/19.4 kWh Lion ✓ Targets: 1.8 MW, 4 MWh
US Vermont	GMP Tesla	 Backup power Peak leveling Retailer electricity market 	 ✓ ~ 2,000 households : PV+BESS ✓ 13 MW capacity of BESS ✓ Remote control ✓ Improving reliability for the customer
Australia	Tesla	 Behind-the-meter (BTM) market Responding to energy shortfalls Frequency control ancillary services (FCAS) markets Network support. 	 ✓ ~ 3000 systems : PV+BESS ✓ To install 5 kW of PV and a 13.5 kWh BESS ✓ A significant opportunity of EV -> V2G (40 kWh)
o Japan	Tohoku EPCO Next Kraftwerke	 Energy market (ancillary, balancing, capacity, etc. VPP demonstration project 	 Aggregation: ✓ Large scale DERs ✓ Demand site units ✓ Home resources (PV, heat pump, air conditioner, batteries etc.)
China	Jibei Electric Power ABB	 VPP demonstration project: DR program in commercial district To stabilize the VRE supply and load balance 	 ✓ IOTIPS ✓ #1 = 26.5 MW and #2) 226 MW ✓ 12.4 million people Zhangjiakou, Qinh uangdao and Langfang

IEDO

Data analysis : Delphi Technique

-O Surveying status and direction of VPP policies in Thailand and foreign countries

WHAT IS AN APPROPRIATE VIRTUAL POWER PLANT IN THAILAND?

DR Program

VPP technology

- o reduce electricity consumption
- a negative electrical load or "negawatt" power
- The negawatt can be exchanged or traded within the VPP platform.
- VPP also delays construction of new power plant to support the peak. (peak plants)

(NEDO

WHAT IS AN APPROPRIATE VIRTUAL POWER PLANT IN THAILAND?

Part I

Microgrids and VPPs share some essential features like the ability to integrate demand response (DR), generation from distributed energy systems, and battery storage at the distribution level.

NEDO

Micro-grids can be both grid-connected or off-grid systems, VPP's are always grid connect systems.

Microgrids usually require some levels of storage; however, the presence or absence of storage in VPPs is possible.

Microgrids are typically traded only in the form of retail distribution, while the VPPs can build a bridge to the wholesale market.

The VPP should minimize the obstacles to make electricity generation from microgrid systems connected to the grid and sell electricity to the power market.

WHAT INFRASTRUCTURE POLICIES ARE NEEDED?

Government sector

 $\overline{\Box}\overline{+}$

VPP Policy

- promote resiliency in the existing electricity infrastructure
- promote DERs such as; Combined heat technology, Biomass energy, Biogas, Wind energy, Solar energy (using both PV and thermal systems), Small hydropower, Gas turbine power plants and Diesel power plants

Relevant authorities

- o promote DERs
- o promote and develop ESS technology
- o promote the production and use of EV
- explore the electricity needs of consumers in order to define the VPP infrastructure
- promote the widespread use of AMI and Smart Meters

Relevant agencies

infrastructure and networks (e.g., 5G

-28-

o promote a cybersecurity system.

o promote the efficiency of ICT

technology).

HOW WILL THE ELECTRICITY MARKET BE DEVELOPED?

-29-

VPP technology

VPP is a new solution today, essential power infrastructure for tomorrow.

VPP <-> Smart Grid

VPP cloud be implemented by integral all pillars in Master Plan on Thailand's Smart Grid Development 2015 – 2036.

Policy/Market trends

Electricity market structure is an insignificant influence on VPP implementation

• TVPP could be considered.

VPP in Thailand

000

- TSO/DSO can operate the VPP by himself to harvest the flexibility from DERs assets.
- Pilot project -> Trial/POC

THANK YOU FOR YOUR ATTENTIONS

School of Renewable Energy and Smart Grid Technology Naresuan university