

「循環社会構築型光触媒産業創成プロジェクト」

議題6 プロジェクトの詳細 (公開)

6-1. 光触媒共通サイエンスの構築

東京大学 橋本和仁 PL 平成24年11月1日(木)

3. 研究開発成果について (1)目標の達成度

「①光触媒共通サイエンスの構築」の目標

平成23年度に、ラボレベルにおける活性度評価において現状と 比較して紫外光活性2倍、可視光活性10倍の高感度化を達成し、 光触媒共通サイエンスを完成させる。 → 違成された

1/33

3. 研究開発成果について

アカデミア研究体制

(1)目標の達成度

3⁄33

公開

3. 研究開発成果について (1)目標の達成度 個別研究開発項目の目標と達成状況

公開

		成果	達成 度
1-1	高感度化光触媒の設計指針の 確立	・2つの科学的基礎発見を基にして、可視光応答型光触媒材料 (Cu/WO ₃ , Cu/TiO ₂ , Fe/TiO ₂ , Cu _x O/TiO ₂ など)を創製。 これより従来と比較し、可視光活性10倍を達成。	Ø
1-2	不純物ドープによる高感度化 光触媒の研究開発	・ドープによる酸化チタン伝導帯制御および酸素多電子還元触 媒による高活性可視光酸化チタン(Cu/Ti _{1-3x} W _x Ga _{2x} O ₂)を創製。 ・Cu/Ti(III)-doped TiO ₂ , Fe/Fe-dopedTiO ₂ の創製。	Ø
1–3	金属・金属錯体・金属酸化物等 の異種材料との複合による高 感度化光触媒の研究開発	 ・光触媒の反応機構の解析より高感度化可視光応答型光触媒 材料として Rh-doped TiO₂の創製。 ・銅以外の酸素多電子還元助触媒を探索し、WC/WO₃を創製。 ・可視光誘起親水性を発現するCu/TiO₂薄膜やTiO₂/Pt/WO₃薄 膜を開発。 ・Pd・Cu/WO₃や銅の複合酸化物とWO₃に組み合わせによる高 活性で耐アルカリ性の可視光光触媒の開発。 	Ø
1-4	光触媒材料の特性、物性評価 法、高感度化因子の研究開発	・Cu/WO ₃ , Fe/TiO ₂ などにおいて、可視光励起した際のH ₂ O2生 成より、Cu, Feのナノクラスターが酸素多電子還元触媒であるこ とを証明。	0
1–5	酸化チタンの結晶構造制御に よる高感度化光触媒の研究開 発	・十面体酸化チタンの創製より紫外光活性2倍を達成。 ・結晶面選択的に鉄化合物を担持したルチル型並びにブルッカ イト型酸化チタンナノ粒子による可視光下での分解活性向上を 確認	0

4⁄33

個別研究開発項目の目標と達成状況

		成果	達成 度
1–6	光触媒材料の性能評価試験	・可視光光触媒の性能を評価するための評価方法のひとつとし て、VOC分解の測定方法について流通式と完全分解型を検討 し、標準化委員会の空気浄化分科会のJIS原案を作成した。	Ø
1–7	ナノ構造制御による高感度化 光触媒の研究開発	・ナノ構造酸化チタンとそれにCu担持やCu/WO ₃ との複合化によ る可視光活性の向上した材料の開発 ・水熱合成法によって酸化タングステンのナノチューブの開発 ・酸化インジウム系およびロジウムイオン修飾ナノ酸化チタン系 可視光応答型光触媒の開発	Ø
1-8	抗ウイルス・抗菌性能評価方法 の確立	・抗菌評価方法JIS R 1702に準じて、抗ウイルス評価法を確立 し、インフルエンザ、Qβファージなどを対象に、紫外光型・開発 された可視光型光触媒の抗ウイルス・抗菌評価を行った。 ・各社の実証実験サンプルについて、3種のウイルス・4種の菌 について、ラボでの抗ウイルス・抗菌評価を行った。	Ø
1-9	知的財産管理指針の策定	・知的財産管理指針を策定し、実施した。 ・プロジェクト内の実施許諾、大学等による研究成果の公表に ついても策定し、実施した。	0

◎:大幅達成、O:達成、△達成見込み、×未達

3. 研究開発成果について (2)成果の意義

1-1 高感度化光触媒の設計指針

J. Am. Chem. Soc. 2007, 129, 9596, J. Am. Chem. Soc, 2010, 132, 6898, J. Am. Chem. Soc. 2010, 132, 15259. 他

5/33

- 3. 研究開発成果について (2)成果の意義
- 1-1~4 高感度化光触媒の研究開発

新たに開発した可視光応答型光触媒

Cu系化合物/WO₃

中間報告時報告 (2009年)

Cu系化合物/TiO₂

本報告(2012年)

Fe系化合物/TiO₂

本報告(2012年)

従来の酸化チタン

TiO_{2-x}N_x

事業原簿 Ⅲ.2.①-1

- 3. 研究開発成果について (2)成果の意義
- 1-1~4 高感度化光触媒の研究開発

7/33

高感度化光触媒の研究開発 -1~4

3. 研究開発成果について (2)成果の意義

1-1~4 高感度化光触媒の応用 抗菌・抗ウイルス効果

3. 研究開発成果について (2)成果の意義

1-1~4 高感度化光触媒の応用 抗菌・抗ウイルス効果

TEMによる大腸菌の観察

可視光照射下、Cu系化合物/TiO2上での大腸菌の変化

0h (50k)

8h (15k)

24h (50k)

1-1~4 高感度化光触媒の応用 抗菌・抗ウイルス効果

▶ 長所

・暗所でも高い抗菌・抗ウイルス効果

公開

●短所

高湿度な環境で徐々に活性が低下

$$Cu_2O \xrightarrow{Slow} CuO$$

 H_2O

・酸化分解活性なし

赤茶色の着色粉末

1-5,7 酸化チタンの構造制御による高感度化光触媒の研究開発

觜造制御による高感度化光触媒

種々の構造をもつ酸化チタン、酸化タングステンベース光触媒材料の創製 十面体形状酸化チタン・八面体形状酸化チタン 酸化チタンナノワイヤ・ナノチューブ、酸化タングステンナノチューブ など

0

ST-01

結晶面選択的に鉄化合物を担持した酸化チタンナノ粒 子は、可視光下で既存の光触媒材料に比べてトルエン 分解で5倍以上の分解活性を示した

Applied Catalysis B: Environmental, 97, 115–119 (2010)

公開

アスペクト比の異なるブルッカイト型酸化チタンを作製し、 UV照射下で既存の光触媒材料に比べてトルエン分解で 4倍以上の分解活性を示した

PVA

PVP50 no TALH

酸化チタンの構造制御による高感度化光触媒の研究開発 1-5.7

1-6 光触媒材料の性能評価試験

JIS案の作成

セルフクリーニング

日本工業規格

JIS R XXXX-X : 2012

ファインセラミックス-可視光応答形光触媒材料の セルフクリーニング性能試験方法-水接触角の測定

Fine ceramics (advanced ceramics, advanced technical ceramics) – Test method for self-cleaning performance of photocatalytic materials under indoor lighting environment – Measurement of water contact angle

序文

屋外に設置する建築材料,道路関連資材などは、長寿命化に伴い美的外観を維持する要求が高く、自然 の太陽光を利用したセルフクリーニング性能を応用した光触媒製品が多数開発されてきた。さらに近年、 内装材料への応用など、光触媒材料の室内用途も検討されている。しかしながら、従来の紫外線のみに応 答する光触媒では効果が不足することから、室内光に多く含まれる可視光を利用して室内でも高い光触媒 効果を得ることのできる「可視光応答形光触媒」の研究開発が進められた。その結果、近年では実用的な 可視光応答形光触媒が商品化されるに至ったが、その特性に応じた試験方法の制定が望まれていた。この 規格は、このような可視光応答形光触媒のセルフクリーニング性能を実験室で評価できる客観的な試験方 法を提供することで、可視光応答形光触媒材料の普及に資することを目的として制定された。

1 適用範囲

この規格は、平板状の可視光応答形光触媒材料のセルフクリーニング性能を評価するために水接触角を 測定する方法について規定する。ただし、水が染み込んで保持できないような透水性のあるもの、水滴が 隠れてしまうような凹凸をもったもの及び清浄な表面においても水接触角が著しく大きかったり、有機物 を表面に付着させて水接触角を十分に増加させることができなかったりするために付着した有機物の分解 による水接触角の変化を評価できないものには適用しない。

事業原簿 Ⅲ.2.①-5

アセトアルデヒド完全分解

日本工業規格 (案)

JIS R 17XX-2 : 2011

ファインセラミックスー可視光応答形光触媒の空気 浄化性能試験方法-アセトアルデヒド完全分解性能

Fine ceramics (advanced ceramics, advanced technical ceramics)—Test method for air purification performance of photocatalysts under indoor lighting environment—Complete decomposition of acetaldehyde

序文

光触媒は、光照射下で防汚、防曇、抗菌、脱臭、汚染物質の分解・除去などの機能を示し、その応用が 拡大している。近年、室内環境問題への関心の高まりとともに、光触媒材料の室内用途が検討されている。 しかしながら、従来の紫外線のみに応答する光触媒では効果が不足することから、室内光に多く含まれる 可視光を利用して室内でも高い光触媒効果を得ることのできる「可視光応答形光触媒」の研究開発が進め られた。その結果、近年では実用的な可視光応答形光触媒が商品化されるに至ったが、その特性に応じた 試験方法の制定が望まれていた。この現格は、このような可視光応答形光触媒の可視光照射下での空気浄 化性能について、「完全分解性能」を評価指標とし、その対象ガスとしてアセトアルデビドを選択し、客観 的、かつ再現可能な試験方法を提供することによって、これらの可視光応答形光触媒の普及を通じ、安心-安全な社会の構築に質することを目的として制定された。

1 適用範囲

この規格は、空気浄化性能を目的に適用される可視光応客形光触媒の,室内環境など可視光が照射され ている条件での、アセトアルデヒドの完全分解性能を試験する方法について規定する。

2 引用規格

次に掲げる規格は、この規格に引用されることによって、この規格の規定の一部を構成する。これらの 引用規格のうちで、西暦年を付記してあるものは、記載の年の版を適用し、その後の改正版(追補を含む。) は適用しない。西暦年の付記がない引用規格は、その最新版(追補を含む。)を適用する。

25/33

公開

3. 研究開発成果について (2)成果の意義 1-8 抗ウイルス・抗菌性能評価方法の確立

1-8 抗ウイルス・抗菌性能評価方法の確立

抗菌・抗ウイルス評価方法のJIS化、ISO化

公開

・JIS及びISO化へ向けて標準化委員会へ基本データを提出、原案作成終了及びISOへ提案

	対象	JIS	ISO	<u> </u>	
紫外光応答型光触媒	細菌	JIS R 1702	27447		
	ウイルス	原案作成終了 (JIS R 170x)	投票中 ISO TC206/WG37 N887	,	
可視光応答型光触媒	細菌	原案作成終了 (JIS R 171X)	投票中 TC206/SC N886 (ISO/CD 17094)		
	ウイルス	原案作成終了 (JIS R 171z)	原案作成終了 ISO TC206/WG37 N000		
<ラウンドロビン試験の実 ・試験機関:横浜市立大学 TOTO株式会 ・紫外光応答型光触媒 →抗ウイルス性 ・可視光応答型光触媒 →抗ウイルス性 →抗ウイルス性 →抗ウイルス性 →抗ウイルス性	施> 全、北里環境科学セ 社 生能評価の確認 生能評価の確認 面の確認	<u>紫外光</u> シンター、	応答型光触媒試験例(ファージ試験) mW・cm ⁻² ブラス板、T3:紫外光応答型光触媒		
事業原簿 Ⅲ.2.①-12,13			Dark UV	27/33	
3. 研究開発成果について	(2)成果の意義			公開	
1-9 知的財産管理	目指針の策定			<u>Д</u> Ш	
	知的則	İ 產管理指	針		
 特許をうける権利の帰属 ・発明者主義により決定する 大学等と企業の共有特許 ・第三者への許諾を認めることとし、不実施補償は徴収しない この場合の出願費用は企業負担とする 企業の独占的実施 ・共有者たる原料メーカー等の企業が独占的な実施を希望し、かつ当該企業の事業の実施において、独占的な権利を保有することが不可欠と考えられる場合には独占的に実施をすることを認め、大学等は不実施補償を徴収する 					
 ⇒上記、知的財産管理指針をもとに 『情報管理及び知的財産等に関する契約』を締結 ※知的財産取扱規則、発明委員会規則を含む ・東大は別途各機関ごとに共同研究契約、共同実施契約を締結 ・その他、下記のような内容についても規定 ・プロジェクト内での実施許諾 (各機関が保有する単独又は共有の知的財産権を第三者より不利にならない 条件で実施可能) ・大学等による研究成果の公表等 (関係機関へ事前通知後、許諾のあったものを公表) 					
事業原簿 Ⅲ.2.①-14				28⁄33	

3. 研究開発成果について (2)成果の意義

1-9 知的財産管理指針の策定

特許出願・論文発表の状況(アカデミア分)

H19 H20 H21 計 H22 H23 H24 6(0) 13(10) 131件 特許出願(うち外国出願) 12(3) 19(4) 42(26) 39(27) 論文(査読付き) 12 18 17 22 12 9 90件 総説•書籍 7 12 16 32 27 18 112件 研究発表・講演(国内会議) 48 31 50 59 57 8 253件 研究発表·講演 (国際会議) 126件 3 4 40 15 35 29 新聞・雑誌等への掲載 86件 0 25 9 49 1 2 9件 展示会への出展 0 0 2 4 3 0

平成24年10月15日現在

30/33

4. 実用化の見通しについて (1)成果の実用化可能性 **創製した可視光光触媒の安全性**

安全性試験結果のまとめ

	光触媒サンプル				
	抗ウイルスCu 化合物	Cu系/TiO ₂	Fe系/TiO ₂	Cu系/WO ₃	
Ames試験	変異性無	変異性無	変異性無	変異性無	
急性経口毒性	カテゴリー4	カテゴリー5	カテゴリー5	カテゴリー5	
LD _{so} 值	300mg/kg以上 2000mg/kg以下	2000mg/kg以上	2000mg/kg以上	2000mg/kg以上	
反復経口投与 毒性	10 mg/kg/day	1000 mg/kg/day	1000 mg/kg/day	1000 mg/kg/day	
皮膚刺激性GHS分 類	区分外	区分外	区分外	区分外	
皮膚刺激性分類	異常無	異常無	異常無	異常無	
皮膚感作性	無	無	無	無	

4. 実用化の見通しについて (2)事業化までのシナリオ 創製した可視光光触媒の実用化・事業化

