2.4.3 低交流損失線材作製技術開発(ISTEC、住友電気工業、フジクラ、九州大 学、九州工業大学、京都大学、鹿児島大学、産業技術総合研究所、JFCC)

(1) 研究開発目標

本項では、交流応用が想定されている超電導電力ケーブル、超電導変圧器から求められる線材として、交流損失の低減化技術を開発することを目標とする。

超電導電力ケーブルでは、真円断面形状からのずれや線材間ギャップ数・間隔等 の制御、超電導変圧器では、コイル形状における垂直磁場成分の変動に伴う交流損 失低減のための細線(フィラメント)化等が求められており、これらの要求に応える べく、超電導特性が均一な線材作製技術及び細線加工技術の開発を行う。前者では、 基板/中間層での表面平坦性及び結晶粒の完全性、結晶粒配向性等の幅方向及び長 さ方向における均一性を向上させるとともに、超電導層の膜厚及び結晶粒配向度の 均一性を向上させることにより、交流損失低減に耐えうる特性均一線材作製技術開 発を行う。後者では、ケーブルや変圧器等機器仕様に適応した、低交流損失線材実 現に不可欠となる特性劣化を抑制した細線加工技術の開発を行う。ケーブル用長尺 線材に対しては、2~5 mm 幅への切断加工が必要となる。一方、変圧器用長尺線 材に対しては、5 mm 幅に切断した線材をさらに 5 分割にフィラメント化する分 割・溝加工(以後、「スクライビング」と記述)が必要となり、また、普及・導入時 レベル対応では、10 分割のフィラメント化が可能なスクライビングが必要となる。

これらの技術開発により、ケーブル用線材としては、2 mm 幅で 77 K, s.f.中で 300 A/cm-w の I_c 値をもつ 50 m 長線材、また 500 A/cm-w の I_c 値をもつ 200 m 長線材を実現することをそれぞれ中間目標、最終目標とする。一方、変圧器用線材としては、50 m 長 5 mm 幅線材を 5 分割加工し、交流損失が無加工線材に比べて 1/5 に低減できることを実証することを中間目標とし、100 m 長 5 mm 幅線材を 10 分割スクライビングし、交流損失が無加工線材に比べて 1/10 に低減できることを実証することを実証する。また、実証に使用する線材は、3 円/Am 以下の極低技術コスト条件で作製されたものとする。

(2)研究の経緯と実施体制

特性均一線材作製技術開発においては、ISTEC が極低技術コスト線材が見込め る高速 IBAD 基板の開発を、PLD 超電導層と MOD 超電導層用にそれぞれ開発 ((a-1) i)し、同時進行で進める超電導層の開発と合わせて効率的に研究開発を行 った。具体的には、「超電導応用基盤技術研究開発(第Ⅱ期)」プロジェクトにおい て開発した、3 円/Am を見通せる IBAD-MgO 中間層を用いる基板(IBAD 系基板) に対し、幅方向及び長手方向のそれぞれに表面平坦性や中間層結晶粒配向度等の変 化を測定し、基板研磨条件や中間層各層の成膜条件等の条件適正化により表面平坦 性や中間層結晶粒配向度等の均一性向上を図った。

PLD 法による超電導層形成技術開発では、レーザ照射条件、基板温度、ターゲ

Ⅲ-2.4.82

ットスイング条件等の適正化により超電導層の長手方向及び幅方向の不均一性の 改善を図った。MOD 法による超電導層形成技術開発では、塗布方法及び条件の適 正化による膜厚の均一化や仮焼、本焼条件の適正化による超電導層の長手方向及び 幅方向の不均一性の改善を図った。平成 22 年度からは、ISTEC ((a-2) i、(a-3)) に加えフジクラ((a-2) ii) が PLD 超電導層の特性均一化技術の開発を ISTEC と 連携しながら行った。一方、住友電気工業は、主にケーブル用の結晶粒配向金属基 板-PLD 線材に対し、中間層や超電導層の成膜条件の適正化等により特性均一性の 向上を図った((a-4))。

細線加工技術開発に関しては、ISTEC では、これまで実績のある YAG レーザを 用いた切断技術、YAG レーザ処理と化学エッチング法の組合せによるスクライビ ング溝加工技術を主として検討し、L。値劣化率低減、フィラメント間高抵抗化、長 尺化に対応した加工高速化、剥離防止等の課題の解決を図った((b-1)i、ii)。ま た、長尺加工線材に対応した評価技術として SQUID センサアレイ渦電流法等の開 発を進め、加工技術へのフィードバックを図った((b-3)i)。一方、住友電気工業 は、ケーブル用の 2 mm 幅線材への切断加工技術の開発を担当し、スリッタ等によ る機械加工の条件の適正化を図った((b-2))。

本研究開発においては、九州工業大学((a-1)ii)、九州大学((a-5)i、ii、(b-3) ii)、京都大学((a-5)iii、(b-3)v、vi)鹿児島大学((b-3)iii)、産業技術総合研 究所((b-3)iv)が IBAD 基板の均一性評価や線材特性の分布評価を一部担当し、 また JFCC が加工前後の線材の微細組織観察((a-2)ii、(b-4))を担当し、特性均 一線材作製技術開発や細線加工技術開発へのフィードバックを図った。

(3) 具体的成果

(a) 特性均一線材作製技術開発

(a-1) IBAD 系基板の均一性向上技術開発

i) IBAD 系基板の均一性向上技術開発

本項では、高製造速度が実現可能な IBAD-MgO 基板の均一性向上技術開発にお ける成果をまとめる。本プロジェクト開始時点では、40 m 級の長尺 IBAD-MgO 基板の作製に成功したところであり、高速化・高配向化・長尺化の開発が急ピッチ で進められている状況であった。中間層の均一性については、長手方向、幅方向、 ミクロ、マクロともに情報が不足しており、本テーマでは課題の把握から始めてそ の解決までを、他テーマの開発進展と並行して行った。目標としては、中間目標を 達成できる中間層付き基板の開発であり、超電導層の成膜、加工の結果と合わせて 目標を達成するものである。

まず、幅方向については、本プロジェクトで装置導入した Reel to Reel 式高速 XRD 評価装置を用いて PLD-CeO₂/Sputter-LaMnO₃(LMO)/IBAD-MgO/ Sputter-GZO/ハステロイ ™構造の中間層付き基板の結晶粒面内配向度の幅方向 分布を測定したところ、図 2.4.3-1 に示すように、線材幅 10 mm に対して、両端 のビームがテープ外にかかってしまう測定不良領域を除いて CeO₂厚に依らずほぼ 均一な結晶粒面内配向性を示した。これにより、面内配向不良部は多くても両端 100 µm 以下の領域であることがわかった。TEM 観察によって詳細を確認したと ころ、研磨・テープ走行による端部に形状的なダレが数+µm 程度あり、中間層は 結晶粒の面内配向を保ってはいるものの、c 軸が基板と垂直方向を維持しているた め、ダレに伴い c 軸が傾いていることがわかった。この領域は結晶粒の配向は良い ものの、c 軸が傾いた状態であるため超電導電流の幅方向への乗り移りが無いと考 えられ、L 特性向上には寄与し難い領域になっていると理解される。プロジェクト 目標の細線化は最終目標でも線材幅が約 500 µm であるため、これによる影響は少 なく、幅方向の結晶粒配向性に関しては問題ないレベルの成果が得られた。

図 2.4.3-1 PLD-CeO₂/Sputter-LMO/IBAD-MgO/Sputter-GZO/ ハステロイ ™中間層付き基板の結晶粒面内配向度の幅方向分布

一方、長手方向については、線材作製条件によりばらつきがあり、長時間の安定 性に問題がある条件では、後端で結晶粒配向性が劣化することがあった。各プロセ スで求めた長時間安定な条件を用いて成膜することにより、200 m 線材の前端で 3.17 度、後端で 3.07 度とほぼ同等の結果を得た。この線材の長手方向の位置によ る面内配向依存性を調べた所、図 2.4.3-2 に示すように 200 m 長線材においても大 きなバラツキのない線材を得ることができた。

図 2.4.3-2 PLD-CeO₂/Sputter-LMO/IBAD-MgO/Sputter-GZO/ ハステロイ ™構造の 200 m 長 中間層付き基板の結晶粒の 面内配向度の長尺位置依存性

中間層付き基板の均一性が及ぼす超電導特性への影響について考えると、特に細線化時の問題としては、様々な原因で生じる欠陥の存在が挙げられる。そこで、金属基板の圧延痕や傷、各工程で発生する汚れや傷のサイズ、頻度、超電導特性への影響を把握するため、100 m 長線材の作製にあたり、工程毎に走査型レーザ観察装置を用いてレーザ反射率の変化を測定することで欠陥を検出、これを100 m 全長において実施し、超電導層成膜後に SQUID 検査装置、連続ホール素子法などを用いて測定した超電導特性の分布と比較した。

検出された欠陥は各層の成膜後にも引き継がれ、成膜される毎にゴミなどの付着 物を巻き込むことなどから、数が増加し、特に CeO2の成膜時に顕著に増加した。 この欠陥の分布と SQUID、連続ホール素子法の結果とを対応させると、CeO2表 面の欠陥数が多い部分で SQUID により剥離が検出され、剥離領域が広い場合に L 特性の劣化まで影響が出ていることがわかった。この剥離は 10 mm 幅時点では L 特性その他に大きな影響を及ぼさないが、細線化加工時に大きな問題となる。加工 後にこの剥離部分を起点として線材が剥離し、拡張する要因となる。CeO2 成膜前 後で欠陥数が大きく増加することから、欠陥を抑制するため、10m線材を用いて 様々な条件で成膜を行い、成膜前後の欠陥分布を比較した。一例として図 2.4.3-3 に PLD-CeO2 成膜時のレーザパルス周波数による基板表面の欠陥数変化を示す。 図から、周波数の増加に伴い欠陥数が増加すること、特に通常条件からの増加によ り急激に増加していることがわかった。周波数増加による高速成膜は均一性の低下 を引き起こすため、高速化については別の手立てを講じなければならない。ターゲ ット上のレーザエネルギー密度と欠陥数の関係については、エネルギー密度増加に よって顕著な欠陥数の増加は見られなかった。コスト削減をめざした高速化には、 エネルギー密度の増加が有効であることがわかった。

図 2.4.3-3 PLD-CeO2 成膜時のレーザパルス周波数と欠陥数との関係

Y系超電導線材は多層構造を有しているため、その成膜プロセスは多数の工程 を経て、それに伴う付着物発生が欠陥となる。そこで、CeO₂成膜前後で付着物を 拭き取ることにより欠陥発生を抑制する手法を試みた。LaMnO₃(LMO)成膜直後に は 10 m 長の基板に 255 個の欠陥が検出されたが、アセトンを用いて洗浄すること によりその数が 68 個まで減少した。この欠陥数は金属基板の欠陥数とほぼ一致し ており、CeO₂成膜までの段階では欠陥数を増加させないことが明らかになった。

洗浄による CeO₂成膜後の欠陥数を比較したところ、洗浄無しのものでは 171 個、 洗浄した場合には 105 個と顕著な改善効果が見られた。また、この時 CeO₂の結晶 粒面内配向も 3.73 度(洗浄無し)から 3.04 度(洗浄有り)に向上した。一方、CeO₂成 膜後に洗浄した場合は、欠陥数、結晶粒面内配向度ともに変化は見られなかった。 CeO₂成膜までの欠陥は主に付着物のような突起であるのに対し、CeO₂成膜後の欠 陥は凹みであるため、洗浄の影響が無かったものと理解される。LMO までの成膜 は非常に薄いために、付着物を固定する効果が殆ど無いため、拭き取りの効果が大 きいが、CeO₂ は比較的厚いため、付着物の上から成膜された際にテープ搬送時の 曲げ伸ばしによって応力集中が発生しやすく、そのために成膜中に剥がれ落ちて凹 んだ欠陥になると推測される。

さらに欠陥を抑制するには、研磨後の金属基板に存在している欠陥を減らす、即 ち欠陥修復の技術開発が必要となる。欠陥修復の手法としては、MOD 法により溶 液を塗布し、表面張力によって平滑化することで欠陥修復を図る方法が有効である。 本構造の中間層においては、MgO 層の下地となるベッド層にこの手法が適用可能 であり、研磨コストの削減にも繋がる(2.4.5(3)(a-1)項参照)ため、国内外で開発が 進められている。現在 Gd₂Zr₂O₇(GZO)、Ce₂Zr₂O₇ (CZO)を用いて長尺線材の作製 に成功しており、MOD 法の適用による欠陥修復の効果について評価を進めている。

今後、上述の成果を統合し、CeO₂層成膜時のレーザエネルギー密度増加やベッ ド層成膜における MOD 法の適用により技術コスト目標を満足しつつ、細線化が可 能なレベルまで欠陥発生を抑制した中間層付き長尺基板の作製を行う。

ii) IBAD 系基板均一性の MOD 超電導層への影響

IBAD 基板上に形成した MOD-YBCO 超電導層とその下地である中間層のそれ ぞれの結晶粒配向機構や、それらの配向性が超電導特性に与える影響について知見 を得ることを目的とした。具体的には、EBSP(Electron Back Scatter Diffraction Pattern)法を用いて結晶粒配向微細組織観察を行い、これらの配向機構について試 料表面における中央部と端部を比較した。また、面内配向度の異なる試料を用いて 試料断面の配向組織をそれぞれ観察し評価を行った。

図 2.4.3・4 に示すように、MOD-YBCO 薄膜は特に中央部表面に凹凸が見られ、中 央部の粒径の方がやや大きくなっていた。一方、下地の CeO₂ 薄膜は YBCO 薄膜の ような凹凸は見られず、中央部と端部の表面組織の差異はなかった。CeO₂ 薄膜は PLD 法によって成膜されたものである。これらの違いをより詳しく比較するため、 EBSP 法による微細組織観察を行った。図 2.4.3・5 に中央部、端部における MOD-YBCO 薄膜の粒界マップを示す。赤い色が強いほど YBCO 結晶粒が(001)配 向をしていることを示している。また黒い線は 15 度以上の傾角をもった結晶粒界 を表しており、中央部はそのような粒界が少なく、端部において顕著であった。こ のことから、中央部に比べて端部において局所的な J。値の低下が起こる可能性が あることがわかった。このような組織の違いを探るため、さらに下地である IBAD 基板上の CeO₂ 薄膜の粒界マップである。図からもわかるように PLD 法に よって形成された下地の CeO₂ 層は極めて均質であることがわかった。このことか ら、端部と中央部の YBCO 膜の差異は、超電導層成長中に生じたものであると考 えられ、今後、原因究明及び均質化制御法開発を図る予定である。

図 2.4.3-4 IBAD 基板上の MOD-YBCO 薄膜の外観写真と SEM 写真 (a)中央部の MOD-YBCO 薄膜表面(b) 端部の MOD-YBCO 薄膜表面 (c)下地である中央部の CeO₂ 薄膜表面(d)下地である端部の CeO₂ 薄膜表面

 図 2.4.3-5 EBSP による MOD-YBCO 薄膜の粒界マップ。赤い色は結晶粒が (001)配向していることを示す。また黒い線は 15 度以上の傾角の粒界 を表す。(a)中央部、(b)端部。

図 2.4.3-6 EBSP による IBAD 基板上の CeO₂ 薄膜の粒界マップ。 (a)中央部、(b)端部

(a-2) PLD 線材の均一性向上技術開発

i) PLD線材の均一性向上技術開発

PLD 法^(1~5)を用いた長尺 RE(レアアース(希土類元素))系超電導線材の長さ方向の L値の均一性を向上させるためには、長さ方向の L特性分布、不均一性を調べ、製造因子(成膜条件)との相関を把握し、これを改善するための成膜方法・条件の最適化を行う必要がある。図 2.4.3-7~10 は、主に PLD 法による RE 系超電導層の成膜方法に起因した長尺 GdBCO 超電導線材(基板構造: PLD-CeO₂/LMO/IBAD-MgO/GZO/ハステロイTM)のL値の不均一性の例を示したものである。

図 2.4.3-7 PLD 装置レーザ停止による *L*値の不均一性

図 2.4.3-8 成膜条件の経時変化に よる L 値の不均一性

図 2.4.3-10 超電導層及び基板に存在 する欠陥による L 値の不均一性

図 2.4.3-7 では、主に超電導層成膜の際にレーザが停止したことによる L 値の低 下が不均一性の原因である。レーザ停止と同時にヒータが OFF になるため、成膜 条件のずれが生じたことが考えられる。また、再度その位置から成膜を行う際も、 Reel to Reel による成膜のため再開位置に誤差が生じ、その結果最適成膜条件から のずれが起こる。レーザの安定性や装置システムを改善することでこの種の不均一 性は解消された。

Ⅲ-2.4.89

図 2.4.3-8 は、経時変化による成膜条件のずれが原因で起こる L 値低下の例を示 したものである。レーザの状態が不安定である場合、短時間でレーザ発振エネルギ ーが低下する現象が起き、超電導層の特性が低下する。また、光学系のミラー・レ ンズに経年劣化があると、ある時間経過に伴ってミラーの反射率・レンズの透過率 が著しく低下する現象が起こる。さらに、基板上に成膜されなかった酸化物がヒー タの均熱板に大量に付着している状態では、均熱板と基板の接触が不十分となり、 短時間で成膜温度低下を引き起こしたり、付着した酸化物によって基板上に成膜さ れた膜が汚染されたりする原因ともなる。これらの要因によって、図 2.4.3-8 のよ うな、L 値の不均一性が起こったと考えられる。レーザ、光学系のミラー・レンズ 及びヒータ均熱板の状態を改善することによって、均一性向上が可能となった。

図 2.4.3-9 は、成膜時のプルーム(アブレーションプラズマ)の周期的な変化に対応した La値分布を示したものである。長尺 RE 系超電導層の成膜には比較的長時間の成膜時間が必要なため、成膜用ターゲットの挙動表面形状の変化には注意を要する。可能なかぎりターゲット表面全体に均等にレーザビームが照射されるように制御しなければ、ターゲット表面凹凸が生じ、プルームの傾き・周期的な揺れの原因となる。その結果、図 2.4.3-9 のようなプルームの揺れに対応した周期的な La値分布となり均一性を低下させてしまう。プルームの傾き・揺れを低減するようなターゲットの動き、また、多少の傾きや揺れに影響をされないように基板の送り速度を向上する等の改善を行うことで均一性は向上した。

図 2.4.3-10 は、長尺 GdBCO 超電導線材の L値分布の中で局所的に低 L値部が存在する状態を示したものである。これは、PLD 法による RE 系超電導層の成膜に要因する場合と、各種中間層及び金属基板に存在する欠陥が要因となっている場合とが考えられる。そのため両方の原因をつきとめ解決する必要があるが、現状ではまず各種中間層及び金属基板の欠陥の有無・解消を中心にして研究を進めている。図 2.4.3-11 は、局所的な L値低下部の MO(magneto-optical)観察したものである。 図のように、L値低下部には欠陥が存在することがわかる。また、中央に存在する長さ方向に沿った線状の部分は、金属基板であるハステロイ TM 上にある欠陥であ

図 2.4.3-11 局所的な L 値低下部の MO 観察結果

ることがわかっている。このように、超電導層だけでなく、各種中間層・基板も含めた欠陥の原因・改善を行うことで均一性は向上してきている。

図 2.4.3-7~11 のような不均一性の原因となる課題を改善した結果、図 2.4.3-12 ~13 のような長手方向の *L*。値分布の標準偏差が 2 %以下となる均一性の高い線材 を作製することが可能となった。図 2.4.3-12 及び図 2.4.3-13 の線材は、それぞれ 技術コストが 2.9 円/Am、2.65 円/Am と見積もられ、極低技術コストの条件を満 足している。

図 2.4.3-12 50 m 長 GdBCO 超電導線材の長さ方向 La値分布

図 2.4.3-13 80 m 長 GdBCO 超電導線材の長さ方向 L 値分布

他方、超電導線材の幅方向の *I*。値の均一性は、超電導変圧器対応線材や超電導 ケーブル対応線材等に使用する際には非常に重要な要素となる。図 2.4.3-14 は、 PLD 法で作製した短尺(~20 cm)GdBCO 超電導線材を長さ方向にスクライビング した際の幅方向の *I*。値分布である。

Ⅲ-2.4.91

図 2.4.3-14 PLD 法で作製した GdBCO 短尺(~20 cm)超電導線材の幅方向 *I*。値 分布

図 2.4.3-14 の左は、10 mm 幅・10 分割、右は 5 mm 幅・5 分割の結果である。 ここで、最小 L 値を分割数倍し元の L 値で割ったものを通電割合と定義する。図 2.4.3-14 の右図中にあるように、一部スクライビング時のオーバーエッチ部がある ため、正確な値ではないが、通電割合は、幅 1 mm の加工の場合、約 60 %程度で あることがわかる。この通電割合は、現状の 10 mm 幅 PLD 線材のテープ端の約 1 mm 以内の領域の L 値が低下していることに起因すると考えられる。左図中にお いて、幅 2 mm に加工したと想定した場合の通電割合は 75 %程度となる。

図 2.4.3-15 PLD 法で作製した 2 m 長 GdBCO 超電導線材の 5 分割加工後の *I*_c 値分布

図 2.4.3-15 は、2 m 長の GdBCO 超電導線材の 5 mm 幅・5 分割加工後の *L*値 分布の結果である。この線材にもオーバーエッチ部が存在するため正確な値ではな いが、全体での通電割合は約 40%である。ただし、線材端の 1 mm を除けば約 80% と高い値が実現されている。図 2.4.3-16 は、50 m の GdBCO 超電導線材の 5 mm 幅・5 分割加工後の *I*。値分布の結果である。加工前の線材の *I*。値はそれほど高くないが、中間目標である 50 m の長尺に対しても、通電割合 42 %、各フィラメントの *L* 値が 8.0-11.9 A/5 mm-w という比較的高い均一性が得られた。

図 2.4.3-16 50m 長の PLD-GdBCO 超電導線材の 5 分割加工後の L 値分布

図 2.4.3-17 2 mm 幅に切断した 50 m 長 GdBCO 線材の幅方向 La値分布

図 2.4.3-17 は、10 mm 幅・50 m 長線材を 2 mm 幅・50 m×5 本に切断した線材の End to End の *L* 値(幅方向 *L* 値分布)を示している。最小 *L* 値の 5 倍は 388 A であり、2 mm 幅で 77 K、自己磁場中で 300 A/cm-w の *L* 値をもつ 50 m 長線材と

いう中間目標値は達成された。元の 10 mm 幅の *L*値 453 A/cm-w に対し通電割合 は 85 %であることがわかる。このように、幅方向の *L*値分布は、2 mm 幅の場合、 長さ方向の *L*値分布均一性の向上の影響も相まって、50 m 長においても 85 %程 度にまで向上してきている。

ii)低交流損失開発用線材の微細組織観察

透過型電子顕微鏡(TEM)観察から、線材の長さ方向及び幅方向の均一性を損なう 原因を示し、これらを改善することにより交流損失低減に耐えうる線材作製技術開 発を支援することを目的とする。本項目では、長尺 PLD 線材の長手方向の超電導 特性改善を示すため、高 L 値領域と低 L 値領域の TEM 断面観察を行い、それらの 組織の違いから、低 L 値領域となった原因を解明し、プロセスを改善し長手方向 の均一化に貢献した結果について述べる。図 2.4.3-18 に高 L 値領域の PLD-GdBa₂Cu₃O_v(GdBCO)層の断面 TEM 像を示し、TEM 像の A 及び B 領域か らの電子回折図形を(a)、(b)に示す。高 La値領域では、GdBCO 層はほとんど c 軸 配向結晶により構成されている。しかしながら、A で示す GdBCO 結晶は、基板に 垂直な方向に対しc軸が傾斜した結晶である。高L。値領域でもGdBCO層表層に、 このような結晶粒の配向が乱れた結晶がいくつか観察されるが、集束イオンビーム (FIB)-走査電子顕微鏡(SEM)デュアルビームシステムによる3次元解析から、結晶 粒の配向が乱れた結晶は超電導層の1%未満であることがわかっている。これに対 し低 L 値領域(図 2.4.3-19)では、超電導層の大部分が a 軸配向結晶粒で構成されて いる。a 軸配向結晶粒は基板温度が低下した場合に、発生することが知られている ことから、低 La 値領域は成膜時の温度低下が原因であると結論できる。そのため、 今回のTEMによる微細組織観察から、長尺線材への長手方向の均一化のためには、 成膜温度の管理が極めて重要であることを示すことができ、長尺線材プロセス開発 に貢献した。

図 2.4.3-18 高 L 値領域の PLD-GdBCO 層の断面 TEM 像 (a)TEM 像 A 領域 (b)TEM 像 B 領域の電子回折図形

図 2.4.3-19 低 L 値領域の PLD-GdBCO 層の断面 TEM 像 (a)TEM 像 A 領域、(b)TEM 像 B 領域、(c)TEM 像 C 領域の電子 回折図形

iii)Hot-wall 式 PLD 線材の均一性向上技術開発

PLD法はY系超電導体のように多元系からなる薄膜の形成に適した方法である が、超電導線材の幅方向及び長さ方向の特性を均質化するために、装置の構造を検 討してきた。図2.4.3-20にはホットウォール加熱式PLD装置の外観を示す。

図2.4.3-20 ホットウォール加熱式PLD装置

装置中央部が薄膜を成膜させる真空チャンバであり、その両脇に、送り出し・巻き取りリールを配置してあることから連続的にテープ基材(IBAD 層等中間層付き金属基板)が真空チャンバに供給され、基材上に超電導層が形成される。真空チャンバ内を図 2.4.3-21 に模式的に示す。

図2.4.3-21 真空チャンバ内模式図

ターゲット上に照射されたレーザ光により真空チャンバ内に放出された原料が ホットウォールと呼ばれる炉内の基材(IBAD基板)上に成膜する。薄膜の成長面 はホットウォールチャンバの熱容量及び輻射熱により一定温度に保たれているこ とから、本装置により均質な超電導結晶薄膜の形成が期待される。そこで、本装置 を用いて均一な超電導特性を有する線材製造条件を検討した。

図2.4.3・22にIBAD・MgO基板上に形成したホットウォール加熱式PLD装置で超 電導層を形成した線材のL値の線材長さ方向分布を示す。77 K,s.f.において直接通 電により線材を700 mm間隔でI-V特性を測定し、1 µV/cmに到達した電流値をL値 とした。

図 2.4.3-22 高 L 値線材の L 値の長さ方向分布

150 m 超の長さを有する線材において全長に亘って 600 A/cm-w(@77 K,s.f.)以上の L 値を実現している。標準偏差は 8.7 A/cm-w であり、高 L 値の線材においても長さ方向に均質な超電導特性を得ることができた。

図 2.4.3-23 には 10 mm 幅線材の幅方向の *L* 値分布を示すが、端の 1 mm の領 域を除いて高い均一性が得られている。

このように、高性能な長尺のY系超電導線材の製造方法である IBAD-PLD 法により製造した線材の長さ方向の L 特性を測定し、150 m 長を超える超電導線材に

おいて 700 mm 間隔で測定した L。特性は標準偏差が 5%以下の均質な超電導線材を得ることができた。

(a-3) MOD 線材の均一性向上技術開発

MOD 法による Y 系超電導線材は低コストで作製が可能なことからケーブル、変 圧器、SMES などの将来の電力機器への適用が期待されている。これらの応用を 実現するには、長尺の線材が必要であり、また、運転時の交流損失を低減するため に作製後に幅方向に分割加工されて使用されることから、長手方向、幅方向に亘っ て均一な特性を有していることが重要である。そこで、本項では Y 系 MOD 超電 導線材の均一性向上技術開発を行った。

ここで、本プロジェクトにおける中間目標は以下の通りである。

・ ケーブル用 : 2 mm 幅 I_c = 300 A/cm-w(@77 K,s.f.), 50 m

・ 変圧器用 : 5 mm 幅 5 分割線材; 分割無に比べて交流損失 1/5

(内部目標として、5 mm幅5分割線材は $I_{c} = 200$ A/cm-w(@77 K,s.f.), 50 m を設定)

まず、長手方向及び幅方向での均一性を向上させるために、局所的な特性の低下 要因を除去する必要があり、作製した線材の局所的な Le 特性低下部を調査し、線 材作製方法の改良を行った。その後、幅方向の Le 特性の均一性について調査を行 い、線材作製時の幅方向端部の Le 特性が低いことを確認し、その原因が線材作製 時の幅方向端部の膜厚分布の不均一が原因であると考え、幅方向膜厚分布均一化の ための改良を行った。それらの結果を踏まえて 20 m 長及び 50 m 長 Y 系 MOD 超 電導線材を作製し、作製後の線材を 2 mm 幅に切断して幅方向 Le 値分布の調査及 び 5 mm 幅×5 分割に切断加工を行い、幅方向 Le 値分布の調査及び分割前後で交流 損失の比較を行った。

Y系 MOD 超電導線材の作製工程の中で Y、Ba、Cu の有機酸塩を混合した溶液 を IBAD-MgO 基板に塗布する方式として Dip-coating 方式を適用しているが、リ ール回転方式で作製した線材では長手方向で I_c 特性が局所的に低下している部分 (図 2.4.3-24)があり、その部分を調査した結果、リールに付着した濃化液体が基板 に付着することにより、仮焼熱処理時において焼損発生の原因になることを確認し た(図 2.4.3-25)。

図 2.4.3-24 局所的な La値低下部を有する長尺線材の La値分布例

Ⅲ−2. 4. 97

図 2.4.3-25 リール回転方式における濃化液体発生状況(a)及び同部の焼損状況(b)

この濃化液体の基板への付着を抑制するために、基板と塗布部が接触しないよう な塗布方式として、チューブ塗布方式へと改善した(図 2.4.3-26)。これにより、線 材か溶液から出る際に接触部がないことから溶液が溜まることが防げると考えた。 このような改善を行い、作製した線材の長手方向 *L* 値分布を調査した結果を図 2.4.3-27 に示す。この結果から、チューブ塗布方式の採用により、局所的な *L* 値低 下部の発生が低減出来ることを確認した。

図 2.4.3-26 チューブ塗布方式の模式図。側面(a)及び上方(b)からのイメージ図

 A. Monthly	380 A
300 A 78%	00077

図 2.4.3-27 チューブ塗布方式により作製した線材の L 特性分布

次にチューブ塗布方式を適用して作製した Y 系 MOD 超電導線材の幅方向の L 特性分布及び膜厚分布を調査した結果、幅方向 L 特性分布及び膜厚分布が不均一であった。この結果から、幅方向 L 値分布が不均一である原因は幅方向膜厚分布が不均一である場合、部分的に厚膜となった部分でクラックが発生しやすく、また幅方向最端部の膜厚が薄いことによって生じると考え、IBAD-MgO 基板に塗布される溶液量が基板とチューブの距離に依存することをチューブと基板の距離を変化させた時の幅方向の膜厚分布の調査によって確認した。チューブサイズを変化させた場合の幅方向膜厚分布の調査結果を図 2.4.3-28 に示す。この結果から、基板

端部とチューブ内壁の距離が小さく、基板塗布面とチューブ内壁の距離は大きいほうが膜厚均一化を図るために有効であることがわかった。

図 2.4.3-28 基板とチューブ内壁距離による膜厚分布の関係

上記の知見に基づいて作製した 10 mm 幅の 20 m 長 Y 系 MOD 超電導線材を 2 mm 幅に切断して、幅方向の I_c 特性分布を調査した結果を図 2.4.3-29 に示す。この結果、2 mm 幅に切断した線材の 5 本中 4 本で $I_c = 55$ A/ 2 mm-w が得られた。 位置 5 に該当するエッジ部では、 I_c 特性の低下がみられたが、原因が、線材作製時にリールの鍔に線材が接触することによる変形であることを確認し、既に接触を防ぐ対策を施している。これらの知見の基、50 m 長線材を作製し、2 mm 幅に切り出し長手方向の I_c 特性分布を調査した結果を図 2.4.3-30 に示す。本試料の End to End の I_c 値を評価した結果、79.4 A/2 mm-w が得られ、中間目標である 300 A/cm-w を超える 397 A/cm-w を確認した。

図 2.4.3-29 20 m 長 Y 系 MOD 超電導線材の 2 mm 幅毎の幅方向 L 値分布

図 2.4.3-30 MOD 法により作製した 50 m 長線材から切り出した 2 mm 幅線材 の長手方向の L 値分布

また、同様の条件で作製した 20 m 長 MOD 線材を 5 mm 幅×5 分割にスクライ ビングした後に、スクライビング前と比較した結果、交流損失の主たる成分である ヒステリシス損失は 1/5 以下に低下し、スクライビングによりヒステリシス損失が 低減できることを確認した。ヒステリシス損失測定結果を図 2.4.3-31 に示す。但 し、図 2.4.3-31 の評価は局所的な損失の評価であり、目標値の確認にはコイル化 した上で損失評価もしくは均流確認が必要である。

図 2.4.3-31 5 mm 幅×5 分割×20 m Y 系 MOD 超電導線材の分割前後での ヒステリシス損失比較

(a-4)結晶粒配向金属基板-PLD線材の均一性向上技術開発

結晶粒配向金属基板 - PLD 線材に関する均一性の向上には、中間層の平坦性及 び結晶粒の配向度の均一性の向上、また中間層形成条件の安定性が求められる。中 間層は RF スパッタで成膜し、CeO₂/YSZ/CeO₂の三層構造を有しており、中間層 形成条件の安定化は成膜時のプラズマ、雰囲気、温度等の安定性向上により行った。 30 mm 幅の結晶粒配向クラッド基板上に成膜した CeO₂や YSZ 層のピーク強度比 I(200)/[I(200)+I(111)]の評価から、線材幅 30 mm、約 80 m の全長に亘って 92 % 以上の強度比を維持し、均一な結晶性と配向度が得られることを確認した(図 2.4.3-32)。

図 2.4.3-32 中間層 CeO₂/YSZ/CeO₂の長手方向の結晶粒配向度分布

PLD法による超電導層形成に関しては、中間層と同様に成膜条件の安定性(温度、 雰囲気、プルーム)の向上を図ることで均一化を達成するとともに、新規大型レー ザの導入により L 特性の向上を図った。新規導入レーザを使用して成膜した 30 mm 幅線材の幅方向 L 値分布から、従来の 1.5 倍のレーザ出力(300 W)とプルーム サイズが増大したことで一層成膜当たりの膜厚が増加し、線材全体の L 値が向上 した結果が得られた。また、新レーザによるレーザエネルギーの安定性向上とヒー タ周辺の温度分布の改善により幅方向 L 値分布も改善され、30 mm 線材の全領域 で 200 A/cm-w 以上の L 値、中央部で最大 500 A/cm-w 級の L 値を得た(図 2.4.3-33)。

図 2.4.3·34 に 300 W レーザで作製した 30 mm 幅線材を 4 mm 幅にスリットした場合の 15 m 長線材の L値分布の代表例を示す。15 m 長の 4 mm 幅線材では最大 $L = 178 \sim 190$ A/4 mm·w($L = 445 \sim 475$ A/cm·w)の L特性が得られた。一方、図 2.4.3·35 に 200 W レーザで作製した 2 mm 幅線材の L特性の代表例を示す。中間目標値である 2 mm 幅-300 A/cm·w(60 A/2 mm·w)-長さ 50 m に対し、2 mm 幅·285 \sim 310 A/cm·w(57 \sim 62 A/2 mm·w)-長さ 28 m が得られた。2 mm 幅線材においても 300 W レーザで作製した高 L特性を有す 30 mm 幅線材をスリット加工することで、今年度中の中間目標値の達成が見込まれる。これら特性均一線材作製技術開発においては、中間層及び PLD 超電導層の成膜プロセス条件と XRD 評価装置による結晶性評価及び SEM・AFM 観察から得られる各層の最表面組織の関係を調査し、最適な成膜プロセスの開発を実施した。

図 2.4.3-35 2 mm 幅線材の Ic 値分布

本研究開発の実施により、これまで 30 m 長級の線材において高 L 値かつ長手方 向に均一な特性を有する結晶粒配向金属基板-PLD 線材の作製技術を開発し、66 kV 大電流ケーブル用線材の安定製造に反映させた。今年度の中間目標と平成 24 年度の最終目標に向けて、長尺プロセスの確立を図るとともに、L 値向上の要因と なる中間層の結晶性や平滑性の改善と、PLD プロセスにおける超電導膜の組成制 御等により L 値の向上と幅方向の均一化を図り、目標達成をめざす。

(a-5) 線材特性分布評価

i) PLD 線材のミクロ特性分布評価

局所的な損失発生箇所を低温レーザ顕微法によって特定し、プロセスとの関係 を明らかにすることによって、均一性の向上に貢献した。また、損失分布と細線加 工時の *J*c-*B*特性との関係を調べることによって、均一性の向上が中、低磁場中で の *J*c向上に有効であることを示した。図 2.4.3-36 (a) に均一性改善プロセスによ る線材の自己磁場における局所損失分布、同図(b)に従来プロセスでの分布、同図(c) にそれぞれの線材の *J*c-*B*特性を示す^(6,7)。

また、素線のマルチフィラメント加工ならびに細線化加工において重要となる テープ線材内の J_e 値の面内分布評価手法として、磁気顕微法を基に非接触かつ非 破壊に J_e 値分布を定量的に評価可能な手法を開発した。1 cm 幅の PLD-GdBCO 線材ならびに機械加工によって 4 mm 幅の線材に加工した細線化試料の線幅方向 の J_e 値分布を評価した結果を、それぞれ図 2.4.3-37 (a) (b)に示す。いずれの場合 も、方形波状の均一な J_e 値を線材幅方向に亘って得られていることがわかる。線 材の左右で反転しているのは、磁気遮蔽電流が反転していることを意味しており、 測定原理に依る。本評価は、加工プロセス前後の信頼性の検証に加え、細線化した 素線を用いて集合導体を形成する際の設計指針に有益な知見を提供した。

図 2.4.3-36 局所均一性の改善と J。値の向上:レーザ顕微法による局所損失の 可視化

> (a)改善プロセス、(b)従来プロセス、 (c)それぞれの線材における *J*_c-*B*特性

(b) 4 mm 幅加工線材の Jc 値分布

ii) PLD線材の交流損失評価

本項では、世界に先駆けて本研究開発において見出した REBCO 超電導線材特 有のユニークな電磁現象について報告する。本現象は、めざしている電気機器に要 求される電流・磁場変動運転時の低交流損失化のみならず、加速器等直流運転機器 の磁化低減(磁化による発生磁場の乱れ抑制)にも大きく貢献する。

図 2.4.3-38 に、IBAD-PLD 法により ISTEC において作製された GZO 中間層を 持つ GdBCO 線材の磁化曲線を示している。図(a)は 35 K において ab 面内に対す る磁場印加角度を 90 度(c 軸方向)から 10 度まで 5 度刻みで変えた際の磁化曲 線である。従来の臨界状態モデルに従えば、磁化曲線はほぼ上下左右対称であるが、 観測した磁化は、外部磁場を正負の磁場ピークから減らし始めた直後にゼロ付近を 通る軌跡を描いた後、通常の J。値に比例する軌跡に戻っている。また、外部磁場 がゼロを横切る時、すなわち外部磁場の方向が変わる時、磁化が大きく減少してい ることがわかる。さらに、印加角度 10 度では磁化曲線が膨らんでいない。図 2.4.3-38(b)は対応する交流損失の測定値である。交流損失は従来理論では垂直磁 場: θ =90度の値に対し $\sin\theta$ で減少するのに対し θ =10度,15度では測定値は二 桁以上も減っている。この傾向は磁場が高いほど、温度が低いほど、θが小さいほ ど顕著になった。図 2.4.3-39(a),(b)は 77 K において1T、2T のバイアス磁場を印 加し θ =15度で測定した磁化曲線と交流損失である。バイアス磁場が2Tの場合、 磁場振幅 0.5 T まで磁化曲線は膨らまず、交流損失も従来理論の予測値より2桁以 上も小さいことがわかる。また、図 2.4.3-40(a), (b)には 35 K ではあるがθ=60 度 の場合のバイアス磁場中の磁化曲線と交流損失の測定結果を示している。 $\theta = 60$ 度でも温度が下げ、磁場を高くするとこの小磁化・低交流損失現象は発現する。

図 2.4.3-38 IBAD-PLD 法により作製した GZO 中間層を持つ GdBCO 線材 の 35 K における(a)磁化曲線と(b)交流損失の磁場振幅依存性

本研究では、この現象が REBCO 超電導薄膜に特有の現象であること、また結 晶粒面内配向度 *A ø* が小さい、すなわち結晶粒の配向性が良い線材ほど、この現象 が顕著であることも確認した。この現象の発現機構については多角的に検討中であ るが、*L* 値が高い見返りとして変動磁場中ではヒステリシス損失が大きいという従 来概念から解放された初めての事象であり、REBCO 超電導線材の低交流損失化を 図る上での新たな指針を世界で初めて得たことは、今後の電動機、風力発電機等へ の展開上大きな意義があると考えられる。 10⁶

図 2.4.3-39 IBAD-PLD 法により作製した GZO 中間層を持つ GdBCO 線材 の 77 K、バイアス磁場中における(a)磁化曲線と(b)交流損失の磁 場振幅依存性(θ=15 度)

図 2.4.3-40 IBAD-PLD 法により作製した GZO 中間層を持つ GdBCO 線材の 35 K、バイアス磁場中における(a)磁化曲線と(b)交流損失の磁場 振幅依存性(θ=60 度)

iii)線材特性の幅方向分布評価

MgO 中間層の上に PLD 法により Gd123 超電導層を積層した高 L 特性の線材の 幅方向の J 値分布を磁気ナイフ法で測定した(図 2.4.3-41)。幅方向にみてスパイク 状に J 値分布が低下している部分がみられる。同じ部分の線材の MO 観察(図 2.4.3-42)において、長手方向に線上に劣化部分が観測され、磁気ナイフ法で測定し た J 値分布が低下している部分と対応している。これは、超電導層積層前の基板・ 中間層に存在したスクラッチ状の不良部の影響と考えられる。

また、線材の長手方向の *I*_c 特性分布は必ずしも均一ではない。線材長手方向の *I*_c 特性のばらつきの標準偏差がσである線材で小コイルを巻いたときの総発熱と最 大電界を理論的に求めた(図2.4.3-43~44)。その結果、線材の *L* 特性のばらつきは、 ホットスポット形成などに関係する最大電界に特に大きな影響を与えることがわ かった。

図 2.4.3-41 幅方向 Jc 值分布

図 2.4.3-42 線材の MO 観察結果

(b) 細線加工技術開発

(b-1) IBAD 基板-PLD/MOD 線材の細線加工・評価技術開発

i) IBAD 系基板-PLD/MOD 線材の細線加工技術開発

「超電導応用基盤技術開発(第 II 期)」プロジェクトで基礎が築かれたレーザスク ライビング細線加工手法(レーザ照射と化学エッチングを組み合わせた方法)につ いて詳細な検討を行った結果、表 2.4.3-1 のような技術課題が存在することがわか った。項目分けした課題について、それぞれの具体的な問題点と発生原因の考察を 示す。

技術課題項目	具体的問題	課題の発生原因の考察			
フィラメント間電 気絶縁の安定化	抵抗が1Ωから1 MΩまで幅広く 分布し、再現性に乏しかった	レーザで溶かされたハステロ イが固まりドロスとなって電 気絶縁不良を起こした			
溝幅の減少と制御	超電導層に 300-500 μm のオーバ ーエッチが発生	硝酸系エッチング液に対して、 怒雪道層のエッチングルトト			
化学エッチングの 短縮	エッチングはバッチ式で1回のエ ッチング時間が30分以上	超電等層のエッテンクレートが銀層よりも高い			
剥離対策	加工後の熱サイクルで剥離が頻発	線材の経時変化、剥離の起点、 機械強度等が不明だった			
長尺線材対応プロ セス開発	エッチング方式の問題	バッチ式では処理できる線材 長は 4.5 m と短い			
マスクテープ選定	実績のあるカプトン粘着テープは 50 m 長を越えるものが市販され ていない	カプトンテープに替わる粘着 テープの探索が必要			
溝内の残留物除去	ドロス及びエッチング成分の残留 が発生した	ドロス発生防止や残留物除去 の研究が必要			
レーザ照射の位置 精度	レーザ照射の設定位置ずれは 10 µm 以上、巻き返し後は 100 µm の ずれが生じた	1 ライン毎のレーザ照射のため 巻き返しによる機械的位置ず れが生じた			

表 2.4.3-1 細線加工技術開発における主な技術課題

レーザスクライビング細線加工手法でめざすマルチフィラメント線材の模式図 を図 2.4.3-45 に示す。安定化銀層及び超電導層までが細線化され、バッファ層や ハステロイ TM 基板はそのまま残った構造となり、フィラメント間電気絶縁を確保 しながら 5 mm 幅を維持した構造となっている。ここでは簡単のため、3 分割線材 を模した図を示した。

図 2.4.3-45 マルチフィラメント線材の構造の模式図

従来の加工プロセスにおけるフィラメント間の電気絶縁不良の原因を探るため、 エッチング後の溝付近の 3 次元観察を行った結果を図 2.4.3-46 に示す。レーザ照 射後に、銀層より 30 µm も飛び出るようなドロスが発生していることがわかる。 ドロスはハステロイ ™が溶融凝固したものであり、フィラメント間電気絶縁を確 保するためには、ドロスの周辺を数百µm に亘ってエッチングしなければならない ため、フィラメント間隔を低減することは困難である。

図 2.4.3-46 従来のレーザスクライビング細線加工手法による溝の 3 次元 像観察結果

またエッチング液として用いた硝酸セリウムアンモニウムに対するエッチング レートは銀よりも超電導層の方が高いため、レーザ照射で形成された溝幅よりも超 電導層の溝幅は 200-500 µm もオーバーエッチされてしまうという問題もあった。 エッチングに関しても、バッチ式であったため処理できる最大長が 5 m 未満と 短く、長尺線材への適用は困難な状態であった。またエッチングのマスク材として 用いていた粘着性カプトンテープは、最大長 50 m であり、最終目標で必要な単長 100 m 以上という分割線材へのマスク形成は不可能であった。

ii) 改良型加工プロセスの開発

ドロス発生を低減するために、マスクテープと銀層だけに照射されるようにレー ザの出力を抑えた。次にエッチング速度を高めつつオーバーエッチを抑えることが できるように銀層と超電導層を異なるエッチング液で処理する方法を検討した。特 に、超電導層にダメージを与えずに銀層だけをエッチングできるエッチング液とし て過酸化水素水(濃度 35 wt%)とアンモニア水(濃度 28~30 wt%)を混合した溶液 を選択した。図 2.4.3-47 には開発した改良型プロセスのフローを示す。

図 2.4.3-47 改良型レーザスクライビング細線加工手法のフローチャート

図 2.3.4-47 での低出力レーザ照射は、紫外線領域で最大5 W の出力を有する Q スイッチ型のレーザ装置を用いた。改良されたレーザスクライビング細線加工手法を用いて作製した細線化試料の三次元観察及び光学顕微鏡観察を行った結果を図 2.4.3-48~49 に示す。従来型のレーザスクライビングの場合(図 2.4.3-46)と比較して、ドロスの発生が抑えられ、溝の断面が長方形に近い形になっているのがわかる。

図 2.4.3-48 改良型レーザスクライビング 図 2.4.3-49 改良型レーザスクライ 細線加工手法による溝の 3 次 ビング細線加工手法によ 元観察像 る溝の光学顕微鏡像

Ⅲ-2.4.109

ドロスの発生が抑えられ、平坦な溝が形成されるようになったので、溝幅の制御 も可能となった。図 2.4.3-50 には、レーザ照射出力と線材の搬送速度だけを変え、 他の条件を一定にして溝幅分布を測定した結果を示す。レーザ照射出力(横軸)が増 加するほどグラフ中の数値(溝幅)が大きくなり、線材の搬送速度(縦軸)が遅い領 域では、線材が切断されてしまう領域(黒色)がある。逆に搬送速度が速く照射出力 が低い領域(茶色)ではマスクテープを貫通できずにスクライビングできないこと を表している。水色で囲った領域では溝幅の変化がなだらかである。照射出力や搬 送速度の微妙なずれが生じた場合でも、この領域に制御すれば安定な溝幅を長尺線 材において確保できることがわかった。

図 2.4.3-50 レーザ照射出力と線材搬送速度の変化による溝幅の制御

上で述べたようにプロジェクト開始時のレーザスクライビング細線加工手法に おける様々な技術課題の解決が見込めたので、次のステップとして、長尺線材加工 用の装置開発を行った。開発したのはマスクテープを Reel to Reel で連続して貼付 けられる装置(図 2.4.3-51)とエッチングを Reel to Reel で連続に行える装置(図 2.4.3-52)である。図 2.4.3-52 に示した Reel to Reel エッチング装置は、銀層と超 電導層で若干構成が異なっている。銀層のエッチング液として過酸化水素水(H₂O₂) とアンモニア水(NH₃)の混合溶液を用いるが、過酸化水素は分解しやすいので、図 中で左側にあるエッチング槽で直接混合する方式を用いている。超電導層のエッチ ングは従来と同じ硝酸セリウムアンモニウム水を用い、図 2.3.4-52 の左側エッチ ング槽に満たして行った。どちらのエッチングもリンスは水の吹付けによってクリ ーニングした。

(非公開)

 図 2.4.3-51 Reel to Reel マスクテープ 図 2.4.3-52 Reel to Reel エッチング 貼り合わせ機の外観 装置の外観

開発したこれらの長尺線材加工用の装置を用いて、まず 5 mm 幅 30 m 長の線材 の 3 分割加工を行った。ここで用いたマスクテープはゴム系粘着材を使用したポリ エステルテープであった。加工前後の End to End の L特性の変化を図 2.4.3-53 に示した。加工前の L値は 1 μ V/cm の基準で 118.1 A/5 mm-w で、加工後は各フ ィラメントの L値が 35.6 A、35.3 A、29.8 A となった。これらを合計した総 L値 は 101 A であり低下率は 14.7 %となるが、レーザスクライビングによる断面積減 少率は 12.4 %であったので、加工によって低下した L特性の割合は 2.3 %と非常 に低い値を得ることができた。

図 2.4.3-53 ポリエステルテープを用いた 5 mm 幅 30 m 3 分割加工前後の L 値

交流電流印加時に均流条件が満たされる電流は最も低い I_c 値のフィラメントで 規定される。したがって、[全フィラメント中で最低の I_c 値×分割数]が実効的な I_c 値ということになるので、29.79×3 ≒89.4 A が実効的な I_c 値である。フィラメン ト間抵抗は 30 m 長で 100 kΩを越えており、1 cm あたり 100 MΩであったので、 内部目標値(1 cm あたり 0.1 MΩ以上)をはるかにこえる超えることができた。 次に、中間目標である5 mm幅5分割50 m線材の加工を行った結果を図2.4.3-54 に示す。加工前の L値は95.1 A/5 mm-w であったものが、5分割加工によって表 2.4.3-2 に示す L値のフィラメントに分割された。ここでマスクテープにはゴム系 よりも除去が容易なアクリル系粘着材を使用したポリプロピレンテープを用いた。 また線長が長くなり、短尺での L値の定義である 1 μ V/cm では線材の焼失の危険 性があるため、定義を 0.5 μ V/cm に引き下げて、L値算出にとっては通常よりも厳 しい条件とした。フィラメント間抵抗は 1 cm あたり 0.5 MΩを越えており、0.1 MΩcm 以上という要求を満たしていた。平均の溝幅は約 350 μ m であったので、 面積減少率は 30 %であった。各フィラメントの L値の合計は 50.1 A となり、L値の低下率は 47.4 %であるので、加工による劣化は約 17 %であった。劣化率を下 げるためには、さらなるプロセスの改良が必要である。交流応用上の実効的 L値 は 40 A となった。

Filament	$I_{\rm c}$ (A)	Between	$R\left(\Omega ight)$	$R^{\rm s}\left(\Omega/{ m cm} ight)$
#1	11.9	F1-F2	101	505,000
#2	8.0	F2-F3	178	890,000
#3	9.7	F3-F4	134	670,000
#4	11.2	F4-F5	120	600,000
#5	9.3	F5-F1	105	525,000

表 2.4.3-2 5 mm 幅 5 分割 50 m 細線加工の結果

中間目標は50m 長5mm幅線材の5分割加工により交流損失が1/5を実証する ことである。素線レベルでの交流損失を把握するために、Reel to Reel 交流磁化率 の測定を加工前後で行った結果を図2.4.3-55に示す。交流磁化率の複素成分(位相 成分)は交流損失の最も大きな成分であるヒステリシス損失に比例するため、素線 レベルでの損失の相対評価をすることが可能である。

図 2.4.3-55 ヒステリシス損失に比例する交流磁化率の分割による変化

この結果は交流磁化率が約8分の1に減少したことを示している。5分割溝加工で あるので、ヒステリシス損失は理想的には5分の1になるはずであるが、これは L。値に比例する量であるので、溝加工前の交流磁化率が面積減少率30%の割合で 減少したと考えると、ヒステリシス損失は約6分の1となる。すなわち、素線レベ ルで交流磁化率を用いた結果からは、5分割溝加工によって損失が5分の1以下に 減少したと考えてもよい。今後は、コイルへの加工を行い、交流電流が各フィラメ ントに均一に流れることを確認する方法で交流損失1/5への低減を今年度中に実 証する予定である。

一方、現行のレーザスクライビング細線加工手法では、エッチング用マスク材料 として粘着性プラスチックテープを用いているため、粘着材を含んだマスクテープ の厚みは 50 µm 以上となり、レーザ照射によるプラスチック基材の縮小を考える と長尺で安定的な溝幅としては 100 µm が最小幅とならざるをえない。今後、最終 目標である 5 mm 幅 10 分割 100 m のマルチフィラメント線材を作製するためには、 溝幅 50 µm 以下を長尺に亘って安定的に加工できる手法を開発するという技術課 題を克服しなければならない。粘着性マスクテープを使用しない方法であれば 5 mm 幅 10 分割溝加工は可能であると予想される。その原理検証のため,超音波援 用スピンドルを用いた機械加工によって 10 分割溝加工を試みた。加工した長さは 約 15cm である。用いたブレードの刃厚は 97µm であったので、面積減少率は 17.5 %の分割加工となった。加工前の L 値は 137 A/5 mm-w であったので、L 値 の低下率は 46%で最小 L 値での低下率は 53%であった。最適条件出しを行なった わけではないで、加工による低下率は 28 %と高いが、原理的には溝幅を細くして 10 分割に到達することは可能であると考えられるが機械加工では、微細構造観察 でロールケーキ状の欠陥が入ることが判明しており、またブレードの摩耗や破損と いう事態が生じる((b-4)参照)可能性があるため長尺対応の装置を開発するの はかなり難易度が高い方法と言える。

(非公開)

(b-2) 結晶粒配向金属基板-PLD 線材の細線加工技術開発

低交流損失ケーブルに適応した細線加工技術として、結晶粒配向金属基板-PLD 線材を2 mm 幅又は4 mm 幅にスリッタで切断加工する技術の開発を実施した。 結晶粒配向金属基板-PLD線材は、10~30 mm 幅プロセスで作製された超電導層 上に銀保護層を DC スパッタで形成し酸素中で熱処理を行った後、スリッタにより 10 mm 幅から2 mm 幅又は4 mm 幅に機械加工する。その後、電気めっき法によ って 10~20 μ m 厚みの銅を被覆する。2 mm 幅に加工したときの J_c 値維持率(幅あ たり J_c 値維持率)90%以上を目標に、加工条件の適正化を行った。

線材作製プロセスを進める中で、切断加工されたエッジでの微小な変形が原因で、 Cu安定化層形成後の線材で安定化層の剥離が発生する現象が明らかとなった。ス リッタによる切断加工では、固い金属テープを再現性良く加工する方式として、矩 形刃によるスリットを採用しており、刃の構造、刃間の隙間、張力、線速などが重 要な条件となる。これらの切断加工条件の適正化を実施した結果、図 2.4.3-56 に 示すように、適正な切断エッジ形状が得られ、La値維持率は図 2.4.3-57 に示すよう に、90 %以上を確立した。さらに、刃の磨耗を含めてこの条件を維持管理してい くことで、長尺線材の安定した切断加工が可能となった。

図 2.4.3-56 適正化後の切断エッジ形状とスリット模式図

(b-3) 細線加工線材の評価技術開発

i)長尺細線加工線材評価技術

平成 20~22 年度は、長尺線材 5 mm 幅 5 分割スクライビングの技術開発を支援 する評価技術の開発を行った。基本的な評価として線材加工の前後に下記の評価手 段を整備した。

加工前: 1) End to End の L 値測定

- 2) ホールセンサアレイによる Reel to Reel 測定
- 3) 四端子法による Reel to Reel 測定
- 加工後: 4) 分割線間ごと End to End の L 値測定

5) 分割線間の電気絶縁性測定

1)、4)、5)では線材全体を液化窒素中に浸漬して測定を行う。特に大電流を流す 1)と4)の測定用として、長尺線材を中間で折り返して重ねて巻くことのできる簡易 無誘導巻きリールを考案した。2)と3)は測定したい部分を浸漬冷却して、線材を順 次送りながら全長に亘り Reel to Reel 測定を行う。2)では高速測定(200 m/h 以上) が可能である。また、センサアレイの信号を適当な仮定をもとにシミュレーション したカーブとフィッティングすることで、幅方向の均一性を評価する手法を開発し た。この手法により分割前に、分割後フィラメント線材がどの程度均一な *L* 値を 有するかを予測できるようになった。

さらに、詳細な欠陥評価のために下記の評価手段を整備あるいは独自開発した。

- 6) 誘導法(交流磁化率)の Reel to Reel 測定; 2)の設備を利用
- 7) MO 観察法による Reel to Reel 測定
- 8) SQUID センサアレイ渦電流法による Reel to Reel 測定
- 9) レーザ走査形状計測による Reel to Reel 測定
- 10) 表面反射光計測による Reel to Reel 測定; 9)の設備を利用

これらはいずれも Reel to Reel で線材全長に亘って検査ができ、しかも非破壊の検

Ⅲ−2. 4. 115

査技術である。よって適宜プロセスの中途で検査することができ、それぞれのプロ セスにおける問題点を抽出し、改善策を講じる重要な手がかりを得ることができる。 また、それぞれ原理の違いを考慮して結果検討を行うことで欠陥の識別判定が可能 となる。

6)は、2)の設備に軽微な変更を加えて行える評価である。ホールセンサの代わり にピックアップコイルを使用し、交流磁化率測定を行いヒステリシス損失の相対的 変化を評価する。外部磁場の印加に超電導マグネットを使用できるため強磁場中で の測定も可能である。また分割後の線材に適用することで、分割フィラメントのお およその Le値及び分割不良部分の有無が評価できる。(図 2.4.3-58 参照)ただし、フ ィラメントごとの寄与を分離して計測することはできない。

図 2.4.3-58 分割前後のヒステリシス損失測定例

図 2.4.3-59 (a)SQUID センサ及び(b) MO 観察法を用いた 5 mm 幅 3 分割 線材の評価例

7)では MO 観察法によって欠陥部分を高い空間分解能で観察する。測定速度は遅 いが、欠陥種類を識別するには極めて有効な手段である。8)では高温超電導 SQUID グラジオメータアレイによって線材中の欠陥の有無を高速で検査する。アレイは線 材の幅方向に並べられており、どのフィラメントに欠陥があるのかを識別すること ができる。測定速度は、線材の冷却機構など装置上の改良により 80 m/h の高速を 実現した。図 2.4.3-59 に 5 mm 幅 3 分割線材に対する測定例を示す。SQUID セン サアレイによる高速チェックで検出した不良箇所を MO 観察法で詳しく調べたと ころ局所的な劣化部や部分剥離による不良であることが判明した。これまでのデー タ蓄積から SQUID センサの信号形状からでもある程度の欠陥種類の識別も可能 になってきている。9)は線材表面にレーザをスキャンさせて段差や形状を計測する ものである。形状を検査することで分割不良や剥離によるフィラメントの浮き(図 2.4.3-60)を検知することができる。高さ分解能は3 µm 程度である。10)ではレー ザの反射率の変化を調べる。さらに小さな凹凸の有無の調査に有効な情報が得られ る。例えば、ハステロイ ™ 基板上の傷や洗浄不良を検出できる。また各層の成膜 ごとにチェックすることで個々の成膜プロセスで生じている問題点を抽出するこ とが可能である。

以上述べてきた複数の検査手法を相補的に活用することで、効率的な不良箇所調 査ができる体制が整備できた。これら開発した長尺線材評価技術は、分割加工プロ セスだけでなく、その前の線材作製プロセス全般に亘って改善支援に役立てられて おり(2.4.3(3)(a-1) i)項目参照)、プロセス改善に大きく貢献した。

一方、SQUID 磁気センサを用いた渦電流法による非破壊検査は、交流渦電流が 材料深部に侵入する低周波領域においても高い感度をもつという特徴がある。した がって、加工線材素線だけではなく、線材の多層構造からなるケーブルや変圧器用 コイル等の、巻線時等の後加工で生じる内部の大きな欠陥も外部から検出できる可 能性がある。例えば、高電圧ケーブルの場合、内部導体とシールド層の間の絶縁層 は約 25 mm 程度の厚さをもっている。このようなシールド及び厚い絶縁層の下に ある多層導体中の欠陥検出をねらいとし、図 2.4.3・61 に示すような、ベースライ ン長(2 つの磁場検出コイル間の距離)の長い高温 SQUID グラジオメータセンサを 平成 20 年度の加速及びその継続研究で開発した。これらのセンサを用い、アルミ 多層試験体中の 38 mm の深さにあるスリット状欠陥が検出可能であることを明ら かにした。一方、ケーブルのような細線化された並列多層導体では一様導体に比べ 渦電流は流れにくくなるが、このような場合にも、励磁コイルの形状等を工夫する ことで内部の断線等が検出できる可能性を、有限要素法を用いた磁場解析により明 らかにした。

図 2.4.3-61 多層導体検査用に開発したベースライン長の長い SQUID センサ (a)Y 系超電導線材を検出コイルに用いた同軸型センサ、 (b)平面型 2 軸グラジオメータ

ii)スクライビング線材の特性分布評価技術

マイクロホール素子を用いた顕微鏡システムを構築し、実用レベルの大電流印加時のテープ線材内の電流分布を評価し^(8,9)、変圧器作製に用いられる5mm幅5分割スクライビング線材の欠陥位置を同定することによって、スクライビング技術の確立に貢献した。

本手法がまた、交流印加時のマルチフィラメント線や、欠陥部位における電磁現 象の観測手法として優れたポテンシャルを有することを明らかとし、その空間分解 能は、本プロジェクトの最終目標である5mm幅10分割線材に十分適用可能なレ ベルにあることを、モデル線材を用いて実証した。図2.4.3・62に、欠陥やブリッ ジングを模擬したマルチフィラメントモデル線材に2Hzの正弦波電流を印加した 際の評価結果を示す。印加電流に同期して各座標位置での自己磁場信号を取得し、 位相遅れをパラメータとして再構築することによって、各瞬時における自己磁場の 2次元像を得る。この結果より、ビオ・サバール則の逆変換によって、電流分布の 時間変化を得ることが出来る。また、ファラデーの法則より、各瞬時における誘導 電界の空間分布を評価することが可能である。さらに、電流分布と電界分布が得ら れたことから、両者の積によって各瞬時における損失の分布を得ることが可能とな る^(10, 11)。すなわち、本評価法によって、超電導線材の交流損失分布の時間依存を 詳細に把握することが可能であり、交流印加時の低交流損失化を実現する最適な素 線構造や、欠陥部位またその補修箇所など複雑な構造を有する部位における電磁現 象の解明が可能となる。

図 2.4.3-62 走査型ホール素子磁気顕微鏡による 5 mm 幅 10 分割マルチフィラ メントモデル試料への交流印加時の電磁特性の可視化⁽¹¹⁾

iii)スクライビング線材の電流分布非接触評価技術

本項の研究開発では、低交流損失化をめざして作製されたスクライビングY 系超電導線材における各フィラメント電流の均流特性を、非接触で精度良く 評価できる手法を確立すること、ならびにこの手法を用いて長尺線材の健全 性の評価や低交流損失線材製造プロセスへのフィードバックを図ることを 目的としている。本項の研究において、交流通電時の線材の電流分布特性は、 図 2.4.3-63 に示すような直径 40 µm の極細銅線で巻線された極小サイズの ピックアップコイル群を用いて非接触で測定する。

図 2.4.3-63 ピックアップコイル群の概観

細線加工技術開発の中間目標である5mm幅5分割のスクライビングY系超 電導線材に対し、その線材の均流特性の評価が十分に行えるように、本電流分

Ⅲ-2.4.119

布測定法の測定精度の向上を図った。そのために、まずピックアップコイル群の製作精度の改善や実体顕微鏡を利用した試料線材への設置精度の改善を行った。さらに、電流分布を算出する際の数値計算プログラムの改良ならびに高速化なども行った。測定精度は、1.1 mm 幅の Cu テープ線材を水平方向に 5本並べた模擬スクライビング溝加工試験導体を用いて評価した。また、1 mm 幅の GdBCO 線材 5本を用いた試験導体に対しても本測定法を適用した。

5本の Cu テープ線材から成る試験導体を用いて測定精度を評価した結果、 各 Cu フィラメントの電流は5%以内の誤差で測定できることを確認できた。 また、5本の GdBCO 線材を用いた試験導体での測定結果から、GdBCO 線材 のフィラメント電流も10%以内の誤差で測定できるレベルに到達した。

図 2.4.3-64 5 分割スクライビング Y 系超電導線材の各フィラメント L 特性の評価例

本測定法における電流測定精度は、5 mm 幅 5 分割スクライビング Y 系超電導線材の均流特性を評価できるレベルに到達した。今後、開発中の線材に対し、本測 定法を適用していく。本測定法はロゴスキーコイルを用いた電流測定法と比較して 簡便に行えるメリットがあり、低交流損失化のためにさらなる細線化が行われたと き、このメリットも助長される。また、本測定法は 2 MVA 級変圧器の電流分布特 性の評価へもピックアップコイル群の取付け方法の工夫などにより適用可能であ る。細線加工技術開発の最終目標である 5 mm 幅 10 分割スクライビングの Y 系 超電導線材に対する本項の課題として、細線化に応じた測定空間分解能の向上が挙 げられる。これに対しては、ピックアップコイルの使用線材径を 30 µm に変えて コイルを小型化し、かつコイル群の校正精度のさらなる改善を図ることで、必要と される測定精度の達成をめざしていく。

iv) 切断加工線材の交流損失シミュレーション

切断加工により低交流損失線材を開発する際、線材が実際の超電導機器に使用さ れる状況を踏まえて切断加工の指針を明らかにする必要がある。そこで、本研究開 発では、電力ケーブルの低損失化をめざした線材切断加工技術開発の指針を理論的 に明らかにすることを目的として研究開発を行った。先ず電力ケーブル導体の交流 損失を理論的に求めてその機構を解明し、次にその結果を基に電力ケーブルに用い られる線材の切断技術開発の指針について考察した。

電力ケーブルは、多数の線材を円筒フォーマの周囲に並列して多層に螺旋巻きに 配置された複雑な構造をもつが、ここでは簡単のため、図 2.4.3-65 に示したよう な、螺旋巻を無視した多角形状の単層の電力ケーブル導体について考察した¹²⁻¹⁵⁾。 この導体の交流通電損失について理論解析を行った結果、交流損失機構として「ギ ャップ効果」と「多角形効果」があることを明らかにした^{13,15)}。「ギャップ効果」 とは隣り合う線材エッジ間のギャップで交流損失を生ずる効果で、ギャップ輸入 さくギャップ数(すなわち線材数)が少ない方が低損失となる。一方「多角形効果」 は、多角形状の導体形状が真円からずれることで損失が増大する効果である。細線 化した多数の線材を用いれば「多角形効果」は抑えられて低損失となるが、同時に ギャップ数が大きくなって「ギャップ効果」により損失は増大するので、これら二 つの効果の競合を考慮しつつ最適な細線化を行う必要がある。

単層電力ケーブル導体の交流損失の解析結果から示唆される、切断加工技術開発 の指針は次のようになる。

- 電力ケーブルの低損失化のためには、線材エッジ間のギャップ幅を小さくする必要がある。線材エッジ付近の L 特性(幅あたりの L 値)の劣化は等価的にギャップ幅の増大をもたらすので、エッジ付近の L 特性の劣化を防ぐ必要がある。
- 多角形状の電力ケーブルの低損失化のためには、ギャップ幅に限界がなければ、線材の細線化により多角形効果を抑制することが有効である。
- ただし、ケーブルの柔軟性の確保や線材エッジの L 特性劣化などの要因によりギャップ幅に下限が存在する場合、過剰な細線化はケーブル径の増大や L 特性の減少といった問題を引き起こすことがある。

これらの指針は、*L*。特性の劣化を抑えつつ線材幅を減少させる切断加工技術開発 の基本的な方向性を示すものである。過剰な細線化は上述した問題を生じる場合が あるので、線材幅は必ずしも細ければ良いわけではなく最適値が存在することを示 唆している^{13,15)}。つまり、線材幅はその最適値を目標に細くすれば十分で、むし ろ切断加工による *L*。特性の劣化を防ぐことに注力すべきである。線材幅の最適値 が実施計画書にある 2~5 mm 程度であることは、本研究開発の単層電力ケーブル 導体の解析からも確認された⁽¹⁵⁾。

Ⅲ-2.4.121

ただし、線材幅の最適値は電力ケーブルの詳細設計に依存するので、上述の単層 電力ケーブル導体の考察では不十分である。そこで最終目標に向けて、今後はより 現実に近い多層電力ケーブル導体の交流損失について理論解析を行い、線材幅の最 適値を明らかにするなど線材切断加工技術開発の定量的指針を得ることをめざし て研究開発を進める予定である。現在すでに二層の場合の解析モデルを考案してお り、これを一般化してさらに多層の場合の理論解析を行う。本研究開発は解析的理 論を基にしており、この手法による超電導電力機器及び線材に関する研究開発は世 界中でも稀少であるという特徴を持つ。解析的理論は、交流損失特性などの物理的 機構の解明や導体構造の系統的最適化に極めて有効であり、その特徴を活かした研 究開発を進めている。

図 2.4.3-65 多角形状の単層電力ケーブル導体

v)レーザ切断加工線材の幅方向特性分布評価

線材幅方向の *J*。値分布は、超電導ケーブルの交流損失特性に大きく影響を与え 得る。特に、超電導ケーブルでは交流損失低減のために 10 mm ないしそれ以上の 幅の線材を 5 mm~2 mm 程度まで切断加工が可能だが、この切断加工後の状態で 線材端部の *J*。値の低下が超電導ケーブルの交流損失に特に大きな影響を与える。

10 mm 幅 IBAD 基板-PLD 線材を、レーザで 5 mm 幅に切断加工した線材の幅 方向 Ja値分布を磁気ナイフ法により測定した結果を図 2.4.3-66 に示す。線材端部 のJa値が低下している領域は 0.3~0.5 mm 程度である。この程度の端部での La特 性低下領域は、様々な製法の Y系超電導線材において観測される未切断線材端部 での La特性低下領域と同程度であり、このレーザによる切断加工技術が線材端部 を大きく劣化させることがないことを示した。すなわち、レーザによる切断加工技 術がケーブル用線材の細線化に適用できる可能性を示せた。

図 2.4.3-66 10 mm 幅 IBAD 基板-PLD 線材をレーザにより 5 mm 幅に切断加工 した線材の幅方向 J_c 値分布((a)の右端、(b)の左端が切断端)

vi)機械式切断加工線材の幅方向特性分布評価

線材幅方向の Ja 値分布は、超電導ケーブルの交流損失特性に大きく影響を与え 得る。大電流ケーブルでは交流損失の低減が大きな課題であり、そのため、もっと も細い場合で 2 mm の細線化も検討されている。また、大電流ケーブルに使用され る結晶粒配向金属-PLD 線材は、幅広で成膜したのち、スリッタによる機械加工 で切断を行う。そのため、スリッタによる切断加工時の線材端での Ja 値低下を評 価する必要がある。

スリッタによる切断加工の際には、スリッタの刃の間隔や切断方向によって加工 後の L 特性に影響が出る。スリッタの刃の間隔を微調整し切断方向を最適にして、 結晶粒配向金属-PLD 線材を 4 mm、 2 mm に切断加工した線材の幅方向 L 値分 布を磁気ナイフ法により測定した。その結果を図 2.4.3-67 に示す。加工前の線材 が幅広線材であるので、4 mm 幅細線、2 mm 幅細線いずれにおいても、両端とも スリッタによる切断端である。図 2.4.3-67 から、線材端部の L 値が低下している 領域は 0.3 mm 程度であり、刃や切断方向の調整を適切に行えばスリッタによる細 線加工技術が線材端を大きく劣化させることがないことを示した。すなわち、この スリッタによる切断加工技術がケーブル用線材の細線化に適用できる可能性を示 せた。

図 2.4.3-67 結晶粒配向金属-PLD 線材を 4 mm、 2 mm に細線化した線材の 幅方向 J_c 値分布((a)4 mm 幅細線、(b)2 mm 幅細線)

(b-4) 加工線材における微細組織観察

切断加工及びスクライビングを行った線材について、切断面の組織変化(変質層 の有無、ポアの発生)等を詳細に解析し、これらの結果を細線化プロセスにフィー ドバックし、加工条件等の適正化支援を目的とする。本節では、長尺線材の切断加 工の最適化を支援した結果について述べる。図 2.4.3-68 に超音波切断を行った切 断面端面及び切断面から 100 μm 内部の組織を示す断面 SEM 写真を示す。この切 断を行った加工条件は、ブレード粒度が#600(粒度 20~30 µm)、超音波振幅幅が 6 um である。また、サンプルの断面出しには集束イオンビーム(FIB)法を採用した。 加工面端面はハステロイ TM、超電導層、中間層とロールケーキ状に折れ曲がって いることがわかる。切断加工面から 100 µm 内部では Ag/GdBCO/CeO₂/GZO/ハス テロイ ™の積層構造が保たれていることがわかり、超電導特性は健全であると考 えられる。次に図 2.4.3-69 でブレード粒度#2500 により切断した切断加工面端面 の断面 SEM 像を示す。図 2.4.3-68 で示すようなハステロイ ™の巻き込みは無い が、超電導層及び中間層の破壊は加工端面からおよそ 30 µm 内部まで観察され、 銀層の剥離は 50 µm 程度まで確認できる。これらの結果を踏まえ、超音波ポリッ シュカットによる切断を行った。この条件で切断した端面の断面 SEM 像を図 2.4.3-70 に示す。この条件では、切断端面近傍でも YBCO/CeO₂/GZO の積層構造 が保たれており、切断面も極めてシャープである。以上のように、線材切断加工後 SEM による微細組織観察を行い、その観察結果から切断加工条件を適正化するこ とに貢献した。

図 2.4.3-68 超音波機械切断加工面の 断面 SEM 像、 ブレード;粒度#600

図 2.4.3-69 超音波機械切断加工面の 断面 SEM 像、 ブレード;粒度#2500

図 2.4.3-70 超音波ポリッシュカットにより切断した端面の断面 SEM 像

(4) 成果のまとめ

本研究開発項目では、ケーブル用及び変圧器用の低交流損失線材として、それぞ れ2mm幅で77K,s.f.中で300A/cm-wのL。値をもつ50m長線材、また50m長 5mm幅線材を5分割加工することによる交流損失の1/5低減の実証という中間目 標の達成をめざし、IBAD基板、PLD及びMOD超電導層、結晶粒配向金属-PLD 線材などの均一性向上技術の開発を行うとともに、線材の2mm幅切断加工や5 分割スクライビング溝加工などの細線加工技術の開発を行った。また、加工前後の 線材の特性分布評価技術を開発し、線材作製及び加工プロセスにフィードバックす ることにより、目標達成を支援した。以下に主な成果をまとめる。

- PLD-CeO₂/Sputter-LMO/IBAD-MgO/Sputter-GZO/ハステロイ™中間層 付き基板について、各層の長時間安定条件を把握することにより、200 m 線材に 亘って CeO₂層の面間配向度約3度の均一性を実現した。また、結晶粒面内配向 度はテープ端の両側 100 µm 程度の領域を除いて幅方向でほぼ均一であること がわかった。
- Reel to Reelの走査型レーザ観察装置により中間層の各層成膜プロセス後の欠陥 密度の評価を行いプロセスにフィードバックすることにより、細線化に有利な欠 陥密度の小さな中間層作製プロセスを実現した。

- PLD 超電導層作製工程において、レーザ安定性の改善、基板温度の均質化、レーザ照射条件のターゲットスイング条件等の適正化により、50 m 長線材の長手方向の L 値均一化(標準偏差 2%以下)に成功し、ケーブル用線材の中間目標値である 2 mm 幅線材に対し 300 A/cm-w(@77 K,s.f.)を達成した(最小 L 値の 5 倍で388 A/cm-w(@77 K,s.f.))。
- IBAD-PLD 線材の L 値の幅方向分布の評価を行い、10 mm 幅線材の両端 1 mm の領域で L 値低下が見られるものの、通電割合(L, min x 分割数/加工前 L 値)として短尺で 60%、中間目標の 50 m の長尺で 42%程度(5分割スクライビング後)と、5分割加工後のヒステリシス損失 1/5 低減を実証可能な均一性を得た。
- IBAD-MOD 線材の作製工程において、チューブ塗布方式を用いた膜厚の長手方 向及び幅方向の均一化により、2 mm 幅-20 m 長線材で55 A/2 mm-w (@77 K,s.f.) の L 値を得た(加工前 L 値をわずかに向上させることにより年度内に中間目標が 達成できる見通し)。また、20 m 長線材を5 mm 幅-5 分割スクライビング加工 を実施し、連続局所測定でヒステリシス損失が 1/5 に低減されていることを確認 し、長尺(コイル)評価で実証可能な見通しを得た。
- ●高い結晶粒面内配向度を有する GdBCO- IBAD-PLD 線材に対し、1~4 T 程度の 磁場が線材面に対し 15~60 度程度の角度で印加された場合、そのヒステリシス 損失が理論に比べ 1~2 桁小さくなる新現象を発見した。この現象は、今後の SMES、電動機、風力発電機等、機器の交流損失低減に大きく貢献するものと考 えられる。
- 30 mm 幅の結晶粒配向クラッド金属基板上の CeO₂/YSZ/CeO₂ 中間層作製技術 を開発するとともに、PLD 法による超電導層成膜条件の安定性(温度、雰囲気、 プルーム)の向上を図ることで、2 mm 幅 28 m 長線材に対し 300 A/cm⁻w (@77 K,s.f.)の L 値を達成し、中間目標の 50 m 長線材での同 L 値を年度内に達成する 見通しを得た。
- ケーブル用の2 mm 幅及び4 mm 幅切断技術については、スリッタを用いた機 械加工条件の適正化を行うことにより、変形の小さな切断エッジ形状が得られ、 Cuメッキ後の I_c値維持率 90%以上となる加工プロセスを確立した。
- ●低パワーでのレーザ照射と 2 段階化学エッチングからなる改良型のレーザスク ライビング技術を開発し、加工の高速化とともに、高いフィラメント間抵抗を保 ちながらオーバーエッチによる L 値低下を低減できる見通しを得た。
- Reel to Reel のエッチング装置等を開発するとともに、マスキングテープ素材や 加工条件の適正化を行うことにより、中間目標である 50 m 長の 5 mm 幅線材の 5 分割スクライビングに成功した。高いフィラメント間抵抗とヒステリシス損失 の 1/5 以下への低減が得られており、コイルに加工後の交流損失評価に使用でき る見通しである(年度内に達成見込み)。
- 長尺加工線材の非破壊評価法として、SQUID 渦電流法の高速化(80 m/h)と欠陥 種別の識別に成功するとともに、高速レーザ走査形状観測装置や交流磁化率によ

る交流損失相対評価法を開発し、超電導特性均一線材作製プロセスや細線加工プロセスの改善に貢献した。

- マイクロホール素子を用いた磁気顕微鏡による細線加工線材における電磁特性のミクロ分布の評価技術、ピックアップコイルアレイを用いた細線加工線材中の 電流分布の非接触評価技術など、細線加工プロセスの改善に貢献できる評価技術 を開発した。
- SEM、TEM 等を用いた加工前後の線材の微細組織観察を行い、線材作製・加工 プロセスの改善に貢献した。

以下の表 2.4.3-3 に目標に対する達成度をまとめる。

成膜法	中間目標	実績 (H22 年 7 月現在)	目標 達成 度	H23 年 3 月まで の中間目標達成 見通しと根拠
IBAD 系基板		CeO ₂ 層配向度 4 度未満 200 m	0	低コスト目標と同 時に達成見込み
	ケーブル用 2 mm 幅-	2 mm 幅-50 m, 388 A/cm-w	0	達成
IBAD-PLD 線材	2 mm _₩ 300 A/cm-w, 50 m (@77K,s.f.)	5 mm幅5分割線材(50 m) ヒステリシス損失 1/5 以 下を確認	0	コイル形状での 評価で達成の見 込み
IBAD-MOD 線材	変圧器用	2 mm 幅-50m 397A/cm-w	\bigcirc	達成
	5 mm 幅 5 分割-交流 損失 1/5	5mm幅5分割線材(20m) ヒステリシス損失 1/5 以 下を確認	0	長尺化・コイル 形状での評価で 達成の見込み
結晶粒配向金 属基板-PLD 線材		2 mm 幅-28m, 300 A/cm-w	0	レーザ安定化に より 50 m 長達 成見込み
IBAD 系基板 -PLD/MOD 線材細線加工 技術	50 m 長 5 mm 幅 5 分割 溝加工	50 m 5 mm 幅 5 分割 フィラメント間抵抗 > 0.1 MΩ/cm ヒステリシス損失 1/5 以下	0	コイル加工後、 均流の確認によ り交流損失 1/5 実証見込み
結晶粒配向金 属基板-PLD 線材細線加工 技術	2 mm 幅切 断加工後 <i>I</i> c 値維持率 90 % 長さ:50 m	L。値維持率 90 %以上 28 m	0	上記PLD線材の 長尺化により達 成見込み

表 2.4.3-3 中間目標と実績の比較、見通し

◎:中間目標達成 ○:H23年3月末までの中間目標達成が見通せている

△:H23年3月末中間目標達成には技術開発の大きな進展が必要

(5) 今後の計画と目標達成の見通し

ケーブル用の 50 m 長、2 mm 幅線材に対し 300 A/cm-w 以上の L値という中間 目標は、IBAD-PLD 線材において極低コスト条件とともに達成することができた。 IBAD-MOD 線材については、加工前線材の L値向上の検討を進めることで、今年 度中に目標達成ができる見通しである。一方、200 m 長、2 mm 幅線材に対し L値が 500 A/cm-w という最終目標を達成するためには、線材のさらなる高 L値化、 長尺に亘っての均一化が必要である。本期間中においては、IBAD-MgO 中間層の 高配向化、配向度の均一化に成功し、線材の L値としては 500 A/cm-w(@77 K,s.f.) 以上を超える値が 50 m で既に実現されている。2 mm 幅切断加工による L値の保 持率を現状の 90 %と仮定すると、560 A/cm-w(@77 K,s.f.)の線材を作製できればよ い。現状で線材の J_c 値は 3-4 MA/cm²(@77 K,s.f.)に達しているので、これは膜厚 1.4-1.8 μ m の線材を極低技術コスト条件で作ることを意味し、現状の作製条件を最 適化していくことで十分達成可能と考えられる。最も大きな課題は、200 m 長の基 板の全長に亘って大きな欠陥のない中間層付き基板を作る技術であり、導入した Reel to Reelのレーザ走査形状観察装置を用いた評価を各工程にフィードバックし、 欠陥頻度の低減を図っていく予定である。

変圧器用の線材に対しては、線材特性の均一化に加え、改良型レーザスクライビ ング技術の開発により 50 m 長 5 mm 幅線材の 5 分割溝加工に成功し、変圧器応用 に必要な十分高いフィラメント間抵抗が保持できることを実証した。今後、5 分割 線材をコイル形状に加工し、交流電流の均流を実証することで交流損失 1/5 の実証 という中間目標を今年度中に達成できる見通しである。一方、100 m 長 10 分割溝 加工という最終目標達成には、2 つの大きな課題があると考えられる。第一の課題 は線材特性の幅方向分布の均一化である。現状の線材は、テープ端から 100-200 µm 程度の領域で *L*。値が低下していることが明らかになった。これは、主として超電 導層などの成膜プロセスに起因するものである。テープ端は中央に比べ基板温度の 低下やプラズマの回り込みなどのある特異点となっており、成膜条件の適正化によ りある程度改善できる可能性はあるが、本質的な解決方法としては例えばテープ幅 を 10 mm から 12 mm に拡張し、両端を切り落とす方法も考えられる。結晶粒配 向金属基板上線材では 30 mm 幅で均一化に成功しているので、極低コスト条件の 維持という課題はあるものの、今後選択肢の一つとして検討していく。

一方、5 mm 幅 10 分割のスクライビングについては、現状のレーザスクライビングと接着剤付きマスキングテープを用いた化学エッチングを併用した方法では 溝幅を 100 µm 以下にすることはできず、各フィラメントの L 値を維持することは 困難が予想される。

(非公開)

(非公開)

表 2.4.3-4 最終目標とその見通し

分類	最終目標	課題	アプローチ
IBAD 基板		配向度:~4度 長さ>200 m 基板幅広化による 幅方向均一化	H23 に各層の薄膜化、高速化 (極低コスト化)を短尺実証。 H24 に 200 m 化。基板幅広化 (例えば 12 mm 化)により幅方 向均一化可能。
IBAD-PLD 線材	ケーブル用 2 mm 幅 500 A/cm-w (@77 K.s.f.)	<i>I</i> _c :>560 A/cm-w 長さ> 200 m 基板幅広化による 幅方向均一化	 ・高速化ターン数増加、レー ザパワー増加、・高 J。値化に より達成可能。H23 高 L。値で 速度向上、H24 200 m 化。
IBAD-MOD 線材	200 m 変圧器用 5 mm 幅	<i>I</i> _c :>560 A/cm-w 長さ> 200 m 基板幅広化による 幅方向均一化	Reel to Reel 装置改造による 2 レーン化、高速化、昭和バッチ 炉採用により達成。H23 I。 値向 上、H24 200 m 化。 基板幅広化により端部での膜 厚増加の問題を回避できる
結晶粒配向 金 属 -PLD 線材	10 分割 100 m	<i>I</i> _c :>560 A/cm-w 長さ> 200 m	レーザの安定化やマルチコー トによる膜厚増加で達成予定
IBAD 基板 -PLD/MOD 線材の細線 加工技術	交流損失が 加工無しに比 べ 1/10	5 mm 幅 10 分割加 エ、フィラメント間 抵抗 >0.1 MΩ/cm 長さ 100 m	(非公開)
結晶粒配向 金属-PLD 線材の細線 加工技術		2 mm 幅切断加工 L 値維持率 >90 % 長さ 200 m	30 mm 幅線材作製プロセスの 適正化、スリッタ機械加工条件 最適化により達成可能

引用論文リスト

- Y. Iijima, K. Kakimoto, Y. Sutoh, S. Ajimura, and T. Saito, "Development of long Y-123 coated conductors by ion-beam-assisted deposition and the pulsed-laser-deposition method", Supercond. Sci. Technol. Vol. 17 (2004) 264-268.
- (2) N. Chikumoto, S. Lee, K. Nakao, K. Tanabe, "Development of inside-plume PLD process for the fabrication of large Ic(B) REBCO tapes", Physica C Vol. 469 (2009) 1303-1306.
- (3) S. Lee, N. Chikumoto, T. Yokoyama, T. Machi, K. Nakao, and K. Tanabe, "Development of In-Plume Pulsed Laser Deposition of High-I_c GdBCO Films for Coated Conductors", IEEE Trans. Appl. Supercond. Vol. 19 No. 3 (2009) 3192-3195.
- (4) A. Ibi, H. Fukushima, R. Kuriki, S. Miyata, K. Takahashi, H. Kobayashi, M. Konishi, T. Watanabe, Y. Yamada, Y. Shiohara, "Development of long YBCO coated conductors by IBAD-PLD method", Physica C Vol. 445-448 (2006) 525-528.
- (5) A. Ibi, H. Fukushima, Y. Yamada, S. Miyata, R. Kuriki, K. Takahashi and Y Shiohara, "Development of long GdBCO coated conductor using the IBAD/MPMT-PLD method", Supercond. Sci. Technol. Vol. 19 (2006) 1229-1232.
- (6) 木須隆暢, "超伝導体中の電流分布・量子化磁束ダイナミクスの可視化技術", 応 用物理, Vol. 79 No. 1 (2010) 38-42.
- (7) A. M. Matsekh, M. Inoue, T. Kiss, A. Ibi, S. Miyata, Y. Yamada, T. Izumi, "Improvement of spatial homogeneity in GdBCO/IBAD-MgO coated conductor", Physica C, in press.
- (8) M. Inoue, K. Abiru, Y. Honda, T. Kiss, Y. Iijima, K. Kakimoto, T. Saitoh, K. Nakao, Y. Shiohara, "Observation of current distribution in high-*T_c* superconducting tape using scanning Hall-probe microscope", IEEE Trans. on Appl. Supercond., Vol. 19 No. 3 (2009) 2847-2850.
- (9) K. Abiru, Y. Honda, M. Inoue, T. Kiss, Y. Iijima, K. Kakimoto, T. Saitoh, K. Nakao, Y. Shiohara, "Visualization of non-uniform current flow in coated conductors by scanning Hall-probe magnetic microscopy", Physica C, Vol. 469 (2009) 1450-1453.
- (10) 木須隆暢, "超伝導体中の電流分布・量子化磁束ダイナミクスの可視化技術", 応用物理, Vol. 79 No. 1 (2010) 38-42.
- (11) K. Higashikawa, Y. Honda, M. Inoue, M. Iwakuma, T. Kiss, K. Nakao, Y. Yamada, T. Izumi, "Spatially-resolved measurement on time-dependent

electromagnetic behavior in alternating current carrying coated conductor", Physica C, in press.

- (12) Y. Mawatari and K. Kajikawa, "Hysteretic ac loss of polygonally arranged superconducting strips carrying ac transport current", Appl. Phys. Lett. Vol. 92, No. 1 (2008) 012504.
- (13) A.P. Malozemoff, G. Snitchler, and Y. Mawatari, "Tape-Width Dependence of AC Losses in HTS Cables", IEEE Trans. Appl. Supercond. Vol. 19, No. 3 (2009) 3115-3118.
- (14) Y. Mawatari, "Field distributions in curved superconducting tapes conforming to a cylinder carrying transport currents", Phys. Rev. B Vol. 80, No. 18 (2009) 184508.
- (15) Y. Mawatari, A.P. Malozemoff, T. Izumi, K. Tanabe, N. Fujiwara, and Y. Shiohara, "Hysteretic ac losses in power transmission cables with superconducting tapes: effect of tape shape", Supercond. Sci. and Tech. Vol.23 No.2 (2010) 025031.

2.4.4 高強度・高工業的臨界電流密度(*J*)線材作製技術開発(ISTEC、古河電気 工業、JFCC、東北大学、中部大学)

(1) 研究開発目標

本項では、強磁場下での強いフープ力が想定される SMES、及び冷却時収縮長の 裕度を内部構造で確保しにくく冷却時の応力負荷が想定され、かつ限られた断面積 の中で大電流を実現しなければならない大電流ケーブルから求められる高強度、高 *J*。(臨界電流/線材総断面積)線材の開発が目標である。

高 J_{a} 線材の実現には線材断面積の大半を占める金属基板の薄膜化と臨界電流値 の向上がともに必要である。ここでは主に金属基板の薄肉化、およびそれを可能に するための高強度化を主な目標とする。また、臨界電流値の向上は他の研究項目に おいても実施されているため、そこで開発された臨界電流向上技術を当研究項目で 開発された高強度金属基板上で実現することが目標となる。具体的には中間目標と して 300 A/cm-w(@77 K,s.f.)-1 GPa-50 m、 J_{a} = 30 kA/cm²(@77 K,s.f.)-50 m が設 定されている。さらに最終目標としては 500 A/cm-w(@77 K,s.f.)-1 GPa-200 m、 J_{a} = 50 kA/cm²(@77 K,s.f.)-200 m をめざす。

(2) 研究の経緯及び実施体制

ハステロイ™基板の薄肉・高強度化には、冷間圧延における強加工が必要となる。これに伴い、残留応力の悪影響や、基板の薄肉化により成膜時の基板表面の温度が変化することなどが危惧されるので、従来の中間層および超電導層成膜条件がそのまま適用できるかどうかは自明ではない。そのためまず、他の研究テーマで開発されている成膜技術が本研究テーマで開発する高強度基板上でも同様に有効であるかを確認することから始めた。また、作製した線材については機械強度及び、数値目標としては設定されていないが強磁場中の応用が想定されるため、強磁場中の通電試験を含む精密な評価も行った。

実施体制としては、PLD 及び MOD 線材対応高強度基板/中間層プロセス開発 ((a-1) i)、これを用いた PLD 超電導層形成技術((a-2))及び MOD 超電導層形 成技術((a-4))に関しては、主として ISTEC が担当し、これを、微細組織観察に より JFCC (a-3))が支援する。一方、MOCVD 対応高強度基板/中間層プロセス開 発及びその上の MOCVD 超電導層形成技術は中部電力と古河電気工業が((a-5)) 担当している。これらの開発線材の電磁気的評価として低温強磁場中での評価を東 北大学((a-6))が、機器適用性評価を山口大学((a-6) ii)が実施する体制である。 高臨界電流化技術開発では、基板/中間層開発((b-1))、PLD 開発((b-2))及び MOD 開発((b-4))に関しては、主として ISTEC が担当し、これを、微細組織観 察により JFCC((b-3))が支援する体制で進めている。 (3) 具体的成果

(a) 高強度金属基板対応線材作製技術開発

(a-1) PLD/MOD 線材対応高強度基板・中間層作製技術開発

本項では、高強度薄肉線材の開発にあたり、薄肉基板とそれを用いた中間層作製 技術の開発成果を纏める。

ハステロイ[™]を用いたY系超電導線材の薄肉・高強度化には、まず金属基板の 冷間圧延における強加工が必要となる。これに伴い、残留応力により線材の幅方 向・厚み方向ともに直進性が低下するため、成膜時に線材端部が成膜装置リールと 接触して端部の部分的な歪みや剥離などを生じる恐れがある。また、基板の薄肉化 により成膜時の基板表面の温度が変化し、成膜条件に影響を与える可能性もある。 また、成膜時の高温処理により引っ張り強度が低下すると予想されるため、これら のバランスを取ることが重要である。

図 2.4.4・1 に従来基板と強加工を施した薄肉基板の応力-歪み曲線を示す。薄肉 基板において、強加工を施すことにより安定化層分を考慮して 1 GPa の強度目標 が達成しうる強度が得られた。次に、基板に最も高温のプロセスである PLD によ る超電導層成膜環境と同じ熱履歴を経験させて基板強度の変化を調べた結果を図 2.4.4・2 に示す。成膜環境経験により、1 割強の強度の低下が確認された。このこ とから、成膜時には高温暴露時間の短縮、すなわち成膜時間短縮と低成膜温度の適 用を考慮する必要があると考えられる。中間層成膜時においても、成膜前のオリジ ナル基板からの強度低下を出来るだけ抑えるため、上記の問題に注意しつつ、最適 条件において成膜を行ったところ、PLD-CeO₂ (500 nm)

/sputter-LMO/IBAD-MgO/ sputter-GZO 構造において、 $\Delta \phi_{CeO2} = 3.7$ 度と 70 μ m 厚基板においても 100 μ m 厚基板と同等の良好な結晶粒配向性を得た。

図 2.4.4-2 金属基板と PLD 成膜後線材 の応力-歪み曲線

各プロセスにおいてテンションや成膜温度の調整を行い、この中間層構造を有する基板を長尺化し、50 m 長の前後において $\Delta \phi_{CeO2} = 3.7 - 3.8$ 度の良好な結晶粒の面内配向を有する中間層付き基板の作製に成功した。このような基板を用いて超電導層の成膜を行い、L値が維持出来る限界の引っ張り強度を測定した。結果はPLD、MODによる超電導層成膜後評価であるため、後の(a-3)、(a-4)に詳述するが、どちらの成膜方法によっても室温での強度評価では目標とした1GPaをわずかに下回った。Cu層の強度寄与を無視していることや、実際は室温ではなく低温で使用されるため、低温での評価を行うなどにより目標を達成見込みである。

(a-2) PLD 法による高強度線材作製技術開発

本項では、(a-1)PLD/MOD 対応高強度基板・中間層作製技術開発において開発 された中間層付き基板に PLD 法により超電導層を成膜して高強度線材を製造する 技術開発の成果を纏める。

PLD 法による成膜では、基板が短時間ではあるが 800 ℃以上の高温に晒される ため、成膜により金属基板が焼鈍されて強度が低下する。また、薄肉基板の場合に は厚みに伴う基板の熱容量の減少とテープ内温度勾配の増加により、テープ表面の 温度が上昇しやすく、通常基板とは成膜条件が異なることが考えられる。これらの 課題を解決するため、特に温度に着目して、最適成膜条件を検討した。この際、焼 鈍効果につながる成膜温度・時間を抑えるため、成膜回数の抑制も行った。成膜後 は通電により L 特性を評価し、常温での引っ張り試験の後、再度 L 値測定を実施 して L 特性の維持限界強度を調べた。

様々なパラメータを調整した結果、極低コスト条件を満足する 15 m/h で 400 A/cm·w(@77 K、s.f.)以上の特性を得ることが出来たので、この線材を用いて機械 強度の評価を行った。図 2.4.4·3 に、PLD 法により成膜された高強度 70 µm 厚ハ ステロイ ™ 基板を用いた GdBCO 線材の応力-歪み曲線を示す。通常基板と高強 度薄肉基板を比較すると、安定化層厚みを 30 µm と想定した場合には 1 GPa 近傍 で降伏していることが分かる。これは成膜前の金属基板強度からの比較では 1 割程 度低下しており、成膜による焼鈍効果が出たものと考えられる。

図 2.4.4-3 厚みの異なる基板を用いて PLD により成膜した線材の応力・歪み曲線

図 2.4.4・4 は薄肉基板と従来基板の引っ張り試験による Le値の可逆限界応力である。応力は安定化層 30 µm として算出しており、わずかに 1 GPa を下回る 0.9 GPa で Le値が低下している。そこで強度としては 1 割程度の上昇を期待出来るため、 同様に強加工を施した 80 µm 厚の基板を用いて長尺線材の作製を行った。図 2.4.4-5に 80 µm 厚基板を用いて作製した PLD-GdBCO線材の Le値分布図を示す。 ここで、この線材は製造速度 30 m/h で作製されており、技術コストは 2.27 円/Am と極低技術コスト条件を満足している。

図 2.4.4-4 厚みの異なる金属基板を用いて PLD 成膜した線材の 引張り応力による L 値変化

図 2.4.4-5 80 µm 厚基板を用いて作製した PLD-GdBCO 線材の L 値分布

現在、この線材の強度を試験・評価中である。中間目標と現状の差はわずかであ り、この基板厚み増加により達成する見込みである。評価に際しては上記の 70 µm 厚基板を用いた線材も含めて、引っぱり試験を液体窒素温度で行うことや、銅の厚 み分、銅の機械強度貢献を複合則で考慮して計算するなどの方策により、さらに実 用性・信頼性の高い評価結果とする。また今後は、フープ力試験なども行い、SMES に代表される磁場中応用への適用性を評価する。

(a-3) 微細組織観察

高強度・高工業的臨界電流密度(J_a)線材開発のため、薄肉基板を用いて、超電導線材を製造する必要がある。本項では、70 µm 厚のハステロイ™に

CeO₂/LaMnO₃(LMO)/MgO/Gd-Zr-O(GZO)中間層を形成した基板を用いて、基板を プルーム内部で成膜することで高速成膜を行う PLD 法の一種である

in-plumePLD 法⁽¹⁾により GdBa₂Cu₃O_y(GdBCO)超電導層を形成したサンプルについて、TEM による微細構造観察を行った結果について述べる。

図 2.4.4-6 に 70 µm 厚のハステロイ ™薄肉基板上に形成された

GdBCO/CeO₂/LMO/ MgO/GZO 層の断面 TEM 像と TEM 像中のA および B 領域 から得られた電子回折図形を a および b に示す。GdBCO 層および CeO₂層はそれ ぞれ、1.3 μ m 厚、0.6 μ m 厚であり、極めて良好な 001 配向をしている。GdBCO 層の表層に一部突起物(矢印部: a 軸配向、傾いた c 軸配向、45 度面内回転した c 軸配向など、配向の乱れた GdBCO 結晶粒)が観察されるが、ほとんどの GdBCO 層は c 軸配向結晶により構成されていることが TEM 観察から判明した。これまで、 100 μ m 厚のハステロイTM 基板上へ in-plumePLD 法により成膜された GdBCO 層 の組織を多数観察したが、それらの組織と同様な組織が形成されていることが分か った。 以上のように、70 µm 厚の薄肉基板上へも、従来の 100 µm 厚のハステロイ ™ 基板上への中間層、超電導層の成膜と同様な条件で、同様な中間層・超電導層組織 が形成できることを TEM 観察から証明した。

図 2.4.4-6 70 µm 厚のハステロイ™薄肉基板上に形成された GdBCO/CeO₂/LMO /MgO/ GZO 層の断面 TEM 像とA および B 領域から得られた電子回折 図形。(a) GdBCO 層の電子回折図形、(b) CeO₂ 層の電子回折図形

今後も主に TEM 観察から超電導層及び中間層の結晶粒配向、欠陥構造、異相の 有無、各層の界面構造等を詳細に解析し、薄肉基板上への作製条件の最適化に貢献 する予定である。

(a-4) MOD 法による高強度線材作製技術開発

本項では、高強度薄肉線材の開発にあたり、中間層付き薄肉基板を用いた MOD 法による高強度線材作製技術の開発成果を纏める。

PLD 法による成膜条件と比較すると、MOD 成膜の環境はやや低温で長時間熱処 理されることになる。この場合にも、加熱による焼鈍効果を抑制するため短時間で 成膜する必要があることと、金属基板厚みが変化した場合にテープ表面の温度が変 化して成膜条件が変化する可能性があることを考慮に入れておく必要がある。成膜 の技術コスト削減のため、別項にて MOD 成膜の高速化技術開発を行っているが、 これと並行して開発が進められた本項目では、まずは薄肉基板における成膜条件の 最適化を行った。技術コストとしては3 円/Am には未達のプロセス条件である。

図 2.4.4-7 70 µm 厚基板を用いて作製した 50 m 長 MOD-YBCO 線材の L 値分布

図 2.4.4-7 から、MOD 線材はほぼ 300 A/cm-w(@77 K,s.f.)を超える高い L 値を 得ており、薄肉基板を用いての MOD 法による高強度線材の作製見通しを得たとい える。本結果はコスト目標を満足するものではないが、コスト目標を満足する技術 開発を別項目で行っており、今後、その成果を今回の結果とあわせ、適用すること でこの技術コストに関する課題を解決する。

図 2.4.4-8 70 µm 厚基板(図中オリ ジナル)を用いて作製され た MOD-YBCO 線材の応力 - 歪み曲線

図 2.4.4-9 厚みの異なる金属基板を用 いて MOD 法により成膜し た線材の引張り応力による *L*。値変化

上記の線材を用いて、強度試験を PLD 線材と同様に行った。図 2.4.4-8 に 70 µm 基板の MOD 成膜前後の応力-歪み曲線を示す。図から、PLD 線材同様に成膜処理 による焼鈍効果で強度が低下していることが分かる。また、成膜による強度低下は PLD の場合とほぼ同程度であった。

図 2.4.4-9 に薄肉基板と従来基板を用いて作製した MOD-YBCO 線材の引張り応 力による *L*値の変化を示す。応力は安定化層 30 µm として算出しており、この場 合もわずかに 1 GPa を下回る 0.9 GPa 強で *L*値が低下している。

今後はY系 MOD 超電導線材においても、液体窒素温度での引っ張り試験の実施や、安定化層銅の強度貢献算入などを行い、特性評価を進めると同時に、技術コスト目標を満足するプロセス開発の成果を適用して年度内の中間目標達成をめざす。

(a-5) MOCVD 線材対応高強度基板・中間層作製技術開発

SMES 用コイルでは強磁場中での大電流通電時のフープ応力に耐え得るために、 機械強度の高い線材が要求されるため、本項では MOCVD 法に対応した高強度基 板・中間層の開発を試みた。

まず、基板材料としてハステロイ™を用いて、厚さの異なる基板において、1 GPa の強度を持つ基板の加工プロセスの開発を進めた。加工プロセスにおける冷間加工 度と強度との比較を行い、冷間加工度の制御により図 2.4.4-10 に示すように 75、 100 µm 厚の基板において、室温での 0.2 %耐力が 1.6 GPa 以上を得た。

こうした高強度基板は圧延工程等が従来と異なる条件で作製されるため、この上の中間層、超電導層の作製条件にも影響を与える懸念がある。そこで、1 GPa を超える強度を持つ高強度基板上への中間層と MOCVD-YBCO 層成膜を検討した。その結果、高強度基板上でも従来基板と同等の成長条件が適用でき、 $I_c = 240$ A/cm-w(@77 K,s.f.)、 $J_c = 2.4$ MA/cm²を得た。

これらの成果をもとに、長尺基板加工プロセスの安定・高度化を図った。圧延条件の適正化を進めることにより、表 2.4.4-1 に示すように、室温での 0.2 % 耐力 = 1.6 GPa を有する 250 m長の基板を安定して得られるようになった。表に記載した 10 条における 0.2 % 耐力の標準偏差は 2 MPa 程度である。また、77 K においては、室温より 10 % 以上高い 0.2 % 耐力を示すことを確認した。

さらに、薄化 IBAD 中間層において、中間層の成膜条件の適正化を行い、高強 度基板上の MOCVD-YGdBCO 層において $I_c = 330$ A/cm-w(@77 K, s.f.)、 $J_c = 4.1$ MA/cm²を得た。また、基板や中間層の結合性・剥離に関しては、中間層の薄化に ともなう剥離などの生じない成膜条件の検討を行った。「MOCVD 法による磁場 中特性改善技術開発」の成果とあわせ、50 m 長の線材で $I_c = 30$ A/cm-w(@77 K、3 T)、基板強度 1 GPa の中間目標を年度内に達成する。

表 2.4.4-1 長尺高強度基板の 0.2 % 耐力

╈┲╻┈	0.2% 耐力(MPa)室温		
奉껛LOT.	0 m位置	250 m位置	
基板A-1	1626	1625	
基板A−2	1621	1621	
基板A−3	1624	1621	
基板A-4	1620	1619	
基板B-1	1608	1614	
基板B−2	1617	1611	
基板B−3	1599	1610	
基板B−4	1599	1614	
基板B-5	1599	1619	
基板B-6	1608	1606	

(a-6) 高強度線材特性評価

i)低温強磁場中特性評価

本項の研究では、作製した長尺線材の機械的応力下の超電導特性の理解と実証を 目的とし、大口径モデルコイルによるフープ力試験及び、短尺試料の引っ張り歪み 試験を実施した。

図 2.4.4-11 に 77.3 K 及び 4.2 K における L 値の引っ張り歪み依存性と同時測定 した応力-歪み特性を示す。 測定した試料は、PLD 法で作製した GdBCO 線材を 2

図 2.4.4-11 PLD-GdBCO テープに対 する(a)応力-歪み特性と (b) *L*値の歪み依存性

mm幅にカットしたものである。安定化層としてスパッタ法により10 μ mのAgを積層している。応力—歪み特性は77.3Kを4.2Kでほぼ同等である。一方で I_c 値は、77.3K,s.f.と比べ、4.2Kの低温において歪みに対してより鈍感であり、不可逆歪みも向上していることが分かった。これまでの報告では、磁場の印加によって I_c 値の歪みによる低下率は大きくなるが、温度低下では逆に小さくなる。4.2K、18Tは不可逆磁場よりも十分小さい磁場と考えることができるので、温度低下の効果が大きく寄与することで、 I_c 値の歪み依存性が減少していると考えられる。

次に、直径 280 mm の単層コイルに対 してフープ力試験を行った。用いた試料 は引っ張り試験を行った試料と同じ PLD-GdBCO テープで幅 5 mm である。 液体窒素で浸漬冷却してコイルの I_c 値を測定した結果、自己磁場下で $I_c = 204$ A/5 mm·w、 n値@1 μ V/cm = 38 となり、短尺の値とほぼ同じであることが分かった。 このコイルを室温ボア 360 mm の大口径超電導マグネットに挿入して試験を実施 した。図 2.4.4-12 に、コイル表面に取り付けた歪みゲージで測定した歪みと、通 電電流から計算した電磁力の関係を示す。横軸のフープ力はコイルの半径 R、線 材全断面積から求めた電流密度 J、線材位置での磁束密度 Bの積である BJRによ って求めた。図 2.4.4-12 から、コイル変形は最大印加電磁力である 1300 MPa 近 傍までほぼ線形に変形し、数回の通電に対してその挙動は可逆であることが分かっ た。この傾きから計算したコイルの見かけ上のヤング率は約 200 GPa となり、短

図 2.4.4-12 PLD-GdBCO コイル における電磁応力-歪 み特性

図 2.4.4-13 PLD-GdBCO コイルの電 流-電圧特性

尺試料で得られた結果と良い一致を示すことが分かった。次に同時測定した電流-電圧特性を図 2.4.4-13 に示す。 図に示した電圧コイルの電極を含む両端電圧のた め、電極の抵抗が乗っている。またコイルのインダクタンスによるコイル電圧も現 れている。図 2.4.4-13 から、480 A/5 mm-w(@77 K,s.f.)近傍からコイルの超電導-常伝導転移に伴う電圧発生が見られている。図 2.4.4-13 の挿入図は電流減少時に おける転移近傍の電流-電圧特性の詳細図である。数回の通電により電圧発生が起 こる電流が減少していることから、電磁力によって超電導特性が不可逆に劣化して いることが分かる。図 2.4.4-11 に示したように、4.2 K における不可逆歪みは約 0.43 %であり、フープ試験では不可逆歪みよりも大きい約 0.7 %程度の歪みが線材 に誘起されていることから、電磁力による超電導線材の劣化が起こったものと考え られる。その他に、いくつかのコイル試験の結果、以下の点が明らかになった。

● コイルにラップジョイントを入れた場合、ジョイント部の剪断応力限界 2~3 MPa によってコイルの耐電磁力特性が決まる。このため、ジョイント部を作製

Ⅲ-2.4.141

する場合には、その部分の機械的補強が必要である。

 ●表面の超電導層側に電極の端部が来るような巻線状態では、電極端部の超電導層 劣化によりさらに低いフープ応力でコイルが劣化する。このため、コイル巻線を したときの電極構造には、超電導層を機械的に保護する仕組みが必要である。

最終目標に向けて、低温で1GPaを目標とするには不可逆歪みの向上が必要で ある。基板の降伏応力は十分高いので、超電導層の不可逆歪み向上が最も効果的と 考えられる。これまでの報告では77.3Kで0.6%程度の不可逆歪みの報告がある ことから、不可逆歪み評価方法の見直しや再現性の確認とともに、不可逆歪みや *L*値の歪み依存性そのものの機構解明が重要となる。

ii)大電流導体用特性評価

この研究項目ではデータセンターでの直流超電導送電システムの応用を想定した超電導ブスバーについての基本的な設計を行った。さらに、ISTECで作製した Y系超電導線材を銅板に半田付けして、超電導特性を測定した。

データセンター(iDC)の消費電力抑制のために高圧直流給電が検討されてい る。大電流導体については、従来のようなケーブルを用いるより超電導ブスバ ーを用いることが適当であると考えられる。これは、テープ線材を多段複数列 に積み、それを銅ケース内に納めてある電流容量にしたのち、まとめて集合導 体として低温配管に納める方式である。比較的低電圧・大電流領域における応 用であるので、超電導が必須であり、同時に電磁力が大きくなるため高強度線 材を利用する必要性が出てくる。

テープ線材からブスバーを作るために、銅板(0.5 mm 厚)にテープ線材をハン ダ付けすること、その臨界電流特性を求めること、電流分布を見積もるために 磁場分布測定を行うこと、銅板を曲げることによって臨界電流特性や電流分布 がどのように変化するか等について実験を行い、同時に解析を進めることを目 標に研究開発を進めた。

銅板にテープ線材をハンダ付けした構造を図 2.4.4-14 に示す。

これを液体窒素で冷却し、電流電圧特性を測定した。結果を図 2.4.4-15,16 に示 す。Y 系超電導線材は磁場中 I_c 特性が Bi 系超電導線材に比べて優れているた め、磁場中 I_c 特性に関する知見を得るために、永久磁石(PM、0.5 T)を端の線 材上に乗せて測定を行った場合と単独の場合で比較を行った。PM を使わない 場合には、臨界電流が 130 A/cm-w(@77 K,s.f.)程度となり、出荷時の値とほぼ 同じ値を得ることができた。また、PM を利用した場合には、臨界電流が 35 A/cm-w@77 K以下になった。これは今までに公表されてきた 0.5 T 磁場印加 時の I_c 特性に比べて低い。今後の検討が必要である。なお、PM を使わないと きの臨界電流測定時の n 値@1 μ V/cm については、15 以上の値が得られ、極め て良好であった。

図 2.4.4-14 銅板にテープ線材をハンダ付けした構造

(b) 高臨界電流化技術開発

(b-1) 高臨界電流化対応基板・中間層作製技術開発

本項では、高工業的臨界電流密度(J_e)線材の開発にあたり、高臨界電流化技術 開発の一環としてそれに対応した基板・中間層作製技術の開発成果を纏める。

高臨界電流化には高臨界電流密度化と厚膜化の2通りの技術開発方向があるが、 対応する中間層付き金属基板の技術開発方向は結晶粒の高配向化により高臨界電 流密度化を促すことと、厚膜化に伴う成膜時間の長時間化に対応した中間層の開発、 そして高均一化により L 特性の劣化部発生を抑制すること、の3つが考えられる。 このうち、高均一化により L 特性の劣化部発生を抑制するテーマについては 2.4.3(a-1)IBAD 基板の均一性向上技術開発の項を参照されたい。結晶粒の高配向 化による高臨界電流密度化については、中間層全体として CeO₂層の結晶粒面内配 向度の向上をめざすことになる。CeO₂ 層の結晶粒面内配向度と L 特性の関係を PLD-GdBCO線材を用いて調べた結果を図 2.4.4-17 に示す。図から、薄膜試料に おいては $\Delta \phi = 6$ 度の中間層を用いても約 6 MA/cm²(@77 K,s.f.)の非常に高い J_c 値 が得られており、下地の結晶粒配向度による影響が小さい。一方、厚膜試料は下地 となる中間層の配向度に敏感であるが、 $\Delta \phi \sim 4$ 度からはその影響が殆ど無くなるこ とが分かる。MOD線材は結晶粒界がミアンダリング構造を有するため、PLD線材 よりも下地の面内配向度に鈍感であるという報告もある⁽²⁾ことから、中間層の結晶 粒配向度としては 4 度程度以上に向上しても高臨界電流化への貢献は殆ど期待で きない。結論として、中間層構造としては CeO₂層の結晶粒面内配向度を 4 度程度 に出来るような CeO₂層の厚みと、それを技術コストとして満足する作製条件を探 索することになる。これについては 2.4.5 低コスト・歩留り向上技術開発の項を参 照されたい。

図 2.4.4-17 PLD-GdBCO 線材の L。特性のAo依存性

厚膜化による高 L 値化に対応する中間層の課題としては、拡散バリア機能の強化 が挙げられる。中間層付き基板は長時間加熱により膨れが発生し、最終的には図 2.4.4-18 に示すような MgO 層-GZO 層間での剥離となるが、この時、剥離部分に

図 2.4.4-18 中間層付き基板の熱処理 による剥離部

はNi元素が拡散していることがEDSに より確認された。超電導層の厚膜化によ って、現状の拡散防止層厚みでは不十分 になる可能性がある。拡散防止層の厚み 増加は製造速度の低下とそれに伴うコス ト高を引き起こすが、MODベッド層の 成膜においてはマルチターン化処理によ り、殆ど技術コストを上げることなく膜 厚を上げることが可能である。

全ての層において、必要最低限の厚み にすることにより成膜時間を短縮して技 術コストを削減することが求められてい るため、超電導層の高 La値化に対応した中間層を作製する場合には、超電導層の 成膜時間に応じた拡散防止層膜厚を選んで成膜する必要になる。

現在の拡散防止層膜厚、中間層構造の基板を用いて、PLD、MOD 両方のプロセスによって 700 A/cm-w(@77 K, s.f.)を超える短尺 L 値を得ており、現在の中間目標段階では、超電導層の成膜速度向上の技術開発の進展も相まって、PLD、MODともに求める L 特性をクリアするに際してこの問題を考慮する必要はなかったが、最終目標を見据えた場合には必要になってくる可能性がある。

今後は、超電導層の製造速度に応じた最適拡散防止層厚みを求め、技術コストの 削減と併せて高臨界電流化対応中間層の開発を進めていく。

(b-2) PLD 法による高臨界電流線材作製技術開発

本項では、高臨界電流線材の開発にあたり、PLD 法を用いた超電導層作製技術の開発成果を纏める。

高臨界電流化には、超電導層の高臨界電流密度化、厚膜化、臨界電流劣化部の抑制、の3つのアプローチがある。臨界電流劣化部の抑制については、2.4.3(a-2)PLD線材の均一性向上技術開発の項を参照されたい。残る高臨界電流密度化と厚膜化についてであるが、PLD法による成膜では、通常、厚みを上げるにつれて臨界電流密度が低下し、膜厚の増加に伴う L。特性の向上が得られない。これは厚みが上がるにつれて超電導層の表面が黒体化し、輻射率が上がるために表面温度が低下してa軸配向粒子の発生を引き起こすことが主な原因である。これを抑えるためには厚みが上がるに従って成膜温度を上げる手法が有効であることが分かっている。また、厚みを上げるには通常、成膜時間が長時間化するため、一方で技術コストの上昇を招くという問題もある。これに対しては2.4.5 低コスト・歩留り向上技術開発の項で詳述するのでそちらを参照されたい。

高 *J*_e化のため、薄肉金属基板を用いるにあたり、ターゲット組成、ロット間差 を抑えるための検討に加えてターゲット-基板間距離などの各種パラメータの最 適化を試みたうえで、50 m 長を超える長さの薄肉基板を用いて線材作製を行った。 図 2.4.4-19 に長尺線材の *L*_e値分布を示す。

この 57.2 m 線材は *L*(min) = 391 A/cm·w(@77 K, s.f.)であり、その *J*。値は安定 化層 30 µm 厚とした場合でも全長にわたって 30 kA/cm²(@77 K, s.f.)を超えており、 中間目標を達成した。今後は最終目標に向けて、さらなる高 *L*。値化と長尺性能向 上を、基板の完全化や超電導層の厚膜化によって実現していく。

(b-3) 微細組織観察

in-plume PLD 法は従来の PLD 法に比べ、ターゲット成分の高収率化、高速成 膜が可能であるため、プロセスの低コスト化が期待できる。しかしながら、 in-plume 法により成膜された GdBCO 層表面には電流を阻害する多数の突起物が 形成されることが知られている。これら突起物が形成される原因を特定し、突起物 を抑制することにより、高 La値化に貢献できる。そこで、本項では、in-plumePLD 法により成膜された GdBCO 層の微細構造を解析し、高 La値化のためのプロセス 開発支援の例について述べる。

図 2.4.4・20 に GdBCO 層の断面 TEM 像を示す。GdBCO 層のほとんどの領域は c 軸配向結晶粒であった。GdBCO 層の表面に存在する突起物は、a 軸配向結晶粒、 c 軸が基板垂直方向から傾斜した GdBCO 結晶粒であることが判明した。この他、 マトリックスの GdBCO 層に対して、面内に 45 度ローテーションした c 軸配向結 晶粒も観察できている。c 軸が傾斜した GdBCO 結晶粒やローテーションした GdBCO 結晶粒とc 軸配向結晶粒の間に CuO 結晶粒が形成されている(図 2.4.4・20)。 この結果は、in-plume PLD プロセスでは、GdBCO 層表面に CuO 結晶粒が形成 された後に、突起物が発生することを示唆している。さらに、これら突起物の 3 次元分布を解明するため、FIB-SEM デュアルビームシステムにより GdBCO 層の 3 次元構築を行った結果、これら突起物の形状から、c 軸傾斜の GdBCO 結晶粒、 45 度ローテーションした c 軸配向結晶粒の下部に CuO 結晶粒が存在することが分 かった(図 2.4.4-21)。この結果から、in-plume PLD プロセスでは、高 L値化の ため、CuO 結晶粒の形成を抑制し、突起部の数を減らすことが必要である。また、 成膜の際、プルーム内部で Cu の濃度分布(組成ずれ)が存在することが分かって いる。そのため、プルーム形状、及びレーザースキャン方法を改善するとともに、 Reel to Reel による基板通過位置を最適化し、さらに基板搬送速度を速くした。そ の結果、図 2.4.5-22 で示すように GdBCO 層の厚さが 1.7 μ m の厚膜化を達成し、 GdBCO 層表面近傍に突起物が形成するもののその突起物の大きさを抑制するこ とができた。この GdBCO 層の L値は 480 A/cm-w(@77 K, s.f.)であり、TEM によ る組織観察から高 L値化への in-plume PLD プロセスの改善に貢献できた。

図 2.4.4-20 in-plume PLD 法により 成膜された GdBCO 層の 断面 TEM 像

図 2.4.4-21 in-plume PLD-GdBCO 線 材の3次元構築結果 ■:突起物、■:空隙、■:CuO、 ■:Gd₂O₃

図 2.4.4-22 プロセス改善後の in-plume PLD 法により成膜された GdBCO 層の 断面 TEM 像

(b-4) MOD 法による高臨界電流線材作製技術開発

本項では、高臨界電流線材の開発にあたり、MOD 法を用いた超電導層作製技術 の開発成果を纏める。

高臨界電流化には、超電導層の高臨界電流密度化、厚膜化、臨界電流劣化部の抑制、の3つのアプローチがある。臨界電流劣化部の抑制については、2.4.3(a-3)MOD線材の均一性向上技術開発の項を参照されたい。残る高臨界電流密度化と厚膜化についてであるが、MOD法による成膜では、原料開発による J。値向値上を検討し、RE種を一部YからSmやGdに代える事によりJ。特性を向上させることに成功した。これを厚膜化、長尺化することを考えると、Reel to Reel 成膜においては線材の幅方向端部に厚膜部分が発生しやすく、この部分でクラックが発生するため、厚膜化の障害となっている。また、厚膜化時のJ。値低下の抑制は、焼成時間の長時間化による未反応粒子の粗大化や膜上部でのa軸配向結晶粒およびランダム核発生を抑制することが主な課題である。さらに塗布・仮焼工程における一層あたりの腹厚調整やReel to Reel 成膜におけるJ。値低下についても検討した。

図 2.4.4-23 に RE を一部 Y から Gd に代えた原料溶液を用いた短尺 MOD 線材 の L 特性の厚み依存性を示す。ここで、フッ化物を含む前駆体仮焼膜から酸化物 REBCO 結晶を得るために水蒸気との反応を用いるが、この反応の副生成物である HF ガスの除去が REBCO 成長速度を規定するため、REBCO 成長速度に影響を及 ぼす要因の一つである焼成雰囲気中の水蒸気分圧を変化させた場合の影響も調査 した。焼成雰囲気が低水蒸気分圧の試料では、厚膜化するに従って L 特性の伸び が止まっているのに対して、焼成雰囲気を高水蒸気分圧雰囲気にし、成長速度を上 げることにより、L 特性の劣化を抑制して、厚膜においてもほぼ均一な J 特性が 得られている⁽³⁾ことが分かる。これらの試料の微細組織を観察した結果、低水蒸気 分圧雰囲気下では、厚膜化時には膜上部の結晶粒が粗大化しているとともに、

図 2.4.4-23 MOD-YGdBCO+BZO 線材の L 特性の膜厚依存性

Y₂Cu₂O₅、CuO(未反応物)粒子の分布も膜厚方向で変化しており、基板側から表面の方向に対して下部から上部に行くに従い、量も増えていた。低成長速度条件においては、低 Ba環境下においても成長界面遠方から Baの供給が行われるため、 腹上部において Baが足りなくなっているとともに、上部の未反応粒子は前駆体の状態で長時間保持されるために粗大化する。このことから、厚膜時には高成長速度 条件の適用により、未反応物の高温粗大化と組成ずれを防ぐことが出来、高い J_c 特性、ひいては高い L_c 特性の実現が可能となる。結果として、1.9 μ m の厚みで MOD による世界最高特性となる 760 A/cm-w(@77 K,s.f.)を得た。

長尺化に際しては、膜厚分布の抑制とそれを利用した厚膜化、さらに先に挙げた 現象による高速結晶成長条件での焼成の全てをクリアする必要がある。膜厚分布の 抑制については、詳細は 2.4.3(a-3)を参照されたい。溶液塗布時のチューブ径のコ ントロールなどにより幅方向端部での膜厚増加が小さい MOD 膜が得られており、 この技術の適用により従来の 1.5 μ m 程度というクラック発生限界を超えることが 可能になると考えている。これまでに、薄肉金属基板を用いて高 J_e 長尺線材の作 製を行った結果、図 2.4.4-7 に示す I_e 値分布を有する線材が得られ、安定化層 30 μ m 厚とした場合、約 20 m 長に亘って J_e >30 kA/cm²(@77 K,s.f.)となった。

今後は、さらなる短尺での高 L 値化とその成果を活かした長尺性能向上を、基板の欠陥抑制や厚膜化、高速化など、他テーマの成果と併せることによって実現していく。

(4) 成果のまとめ

PLD 法による高強度線材作製技術開発においては、強加工を施した 70 μ m 厚の 基板を用いて、 $\Delta\phi$ CeO2 = 3.7-3.8 度の良好な結晶粒面内配向度を有する 50 m 長の 中間層付き基板の作製に成功した。この基板を用いて超電導層の成膜を行い、 I_c 値が低下しない限界の引張り強度を測定した。その結果 PLD、MOD のどちらの成 膜方法によっても室温での機械強度評価では 0.9 GPa と中間目標である 1 GPa を わずかに下回った。しかし Cu 層の強度寄与を無視していることや、実際は室温で はなく低温で使用されるため、低温で評価すべきことなどを考慮して中間目標は達 成見込みである。また確実に強度 1 GPa を実現するために強加工を施した 80 μ m 厚のハステロイ TM 基板を用いて長尺線材の作製を行った。 I_c 値としては 57.2 m 長 に亘って 391 A/cm-w(@77 K, s.f.)が得られている。安定化層の厚さを 30 μ m とし て評価すると、この線材は中間目標値である J_c = 30 kA/cm²-50 m を達成している。 またこの線材の超電導層は製造速度 30 m/h で作製されており、技術コストは計 2.27 円/Am と極低技術コスト条件も満足している。

MOD 法による高機械強度線材作製技術開発においては、現在のところ技術コストとしては目標の3円/Am を満足しないプロセスではあるが、長尺線材の作製を試み、70 μ m 厚金属基板を用いてほぼ 300 A/cm-w(@77 K, s.f.)を超える高い I_c 値を 50 m 長で得ている(J_e = 30 kA/cm²-41.5 m)。現在、他研究項目においてコス

Ⅲ−2. 4. 149

ト目標を満足する技術開発を行っており、その成果を合わせることにより、技術コ ストに関する課題を解決したいと考えている。

MOCVD 法による高強度線材作製技術開発においては、SMES 用コイルとして 強磁場中での大電流通電時のフープ応力に耐え得る機械強度の高い線材開発を試 みた。まず、基板材料としてハステロイ TM を用いて、厚さの異なる金属基板にお いて、1 GPa の強度を持つ基板の加工プロセスの開発を進めた。冷間加工度の制御 により 75、100 μ m 厚の基板において、室温での 0.2 % 耐力 \geq 1.6 GPa を得た。 さらにこれらの高機械強度基板上へ中間層と MOCVD-YBCO 層成膜を検討した。 その結果、高機械強度基板上でも従来基板と同等の成膜条件が適用でき、L = 240A/cm-w(@77 K, s.f.)、L = 2.4 MA/cm²が得られた。また、77 K においては、室温 より 10 %以上高い 0.2 %耐力を示すことを確認した。今後「MOCVD 法による磁 場中特性改善技術開発」の成果と併せ、50 m 長の線材で L = 30 A/cm-w(@77 K, 3 T)、基板強度 1 GPa を達成する。

以上、H22年7月現在の実績を研究項目別に中間目標・達成度・H23年3月までの見通しとその根拠を表 2.4.4-2 にまとめて示す。

分類	H22 年度中 間目標	実績 (H22年7月現在)	中間目標 達成度	H23年3月までの中間 目標達成見通しと根拠
高強度 基板・ 中間層	1 GPa-50 m	50 m 長, <i>∆ϕ</i> _{CeO2} = 3.7 −3.8 度,成膜後は 1 GPa をわずかに下回 る	0	低温での評価を行うな どにより達成を見込む
PLD 法高 強度線材		391 A/cm-w @77 K, s.f. 57.2 m、 コスト条件達成	0	強度試験実施中
MOD 法高 強度線材	300 A/cm-w @77 K, s.f. 1 GPa	300 A/cm ⁻ w @77 K, s.f. ⁻ 45 m	0	低温での強度試験の実 施、低コストプロセス 開発の成果を適用
MOCVD 法高強度 基板・中間 層	-50 m	室温での 0.2 % 耐力 = 1.6 GPa-250 m	\bigtriangleup	MOCVD 法による磁場 中特性改善技術開発の 成果と併せ目標達成を 見込む
高臨界電 流化対応 基板・中間 層		PLD、MOD 両方のプ ロセスによって短尺 <i>I</i> _c >700 A/cm ⁻ w @77 K,s.f.	O	中間目標達成
PLD 法高 臨界電流 線材作製	$J_{e}=$ 30 kA/cm ² -50 m	J _e = 35.5 kA/cm ² @77 K,s.f57.2 m コスト条件達成	O	中間目標達成
MOD法高 臨界電流 線材作製		短尺で 760 A/cm-w @77 K,s.f. J _e = 30 kA/cm ² @77 K,s.f. ⁻ 41.5 m	0	基板の欠陥抑制や厚膜 化、高速化の成果とあ わせ中間目標達成を見 込む

表 2.4.4-2 中間目標と実績の比較、見通し

◎:中間目標達成 ○:H23年3月末までの中間目標達成が見通せている

△: H23 年 3 月末中間目標達成には技術開発の大きな進展が必要

(5) 最終目標達成への見通し

最終目標である 500 A/cm·w(@77 K, s.f.)-1 GPa-200 m、 $J_e = 50$ kA/cm²(@77 K, s.f.)-200 m を達成するためには今後いくつかの課題を克服する必要がある。

高強度基板・中間層の作製については、中間目標達成時までに得られる技術を基本に、長尺化を図る。一方、さらなる高 L 値化のための超電導層の厚膜化に伴い、熱処理時間増による強度低下が危惧される。この課題に対しては、圧下率増加による強度向上、超電導層の高製造速度化による熱処理時間維持等の方策をもって、 H24 年度目標達成を見込んでいる。また、必要に応じて新規基板の採用も検討する。

以上のアプローチによって得られた長尺の高強度基板・中間層上に、PLD 法及 び MOD 法による高 L 値化・高速化・長尺安定化をめざしている他研究テーマの 成果を適用して成膜することにより、高強度線材の最終目標を達成する。

また、高 *L* 値化については短尺においては目標特性を実現しているので、均一 化テーマにおける開発成果を薄肉基板上へ適用することにより高 *J* 値化及びその 長尺化を図り、高 *J* 線材開発に関する最終目標を達成する。

MOCVD 法については短尺における高 L 値化およびその長尺化がともに課題で あるが、これまで得られた超電導層厚膜化の成果を基に、さらに厚膜化に対応した 基板金属元素の拡散防止等の中間層の適正化を行い、最終目標を達成する予定であ る。

以上、最終目標を達成するための課題、及びそれらの課題を克服するためのアプ ローチと目標達成の見通しを表 2.4.4-3 にまとめて示す。

分類	最終目標	課題	アプローチと見通し
高強度基板・ 中間層	取於日標 500 A/cm-w @77 K, s.f. -1 GPa-200 m、 J _e = 50 kA/cm ² -200 m	 ・高 L 化 (厚膜 化) に伴う熱処 理時間増による 強度低下抑制 ・長尺化 	 ・圧下率増加による強度向上 ・新規基板の採用 ・超電導層の高製造速度化による熱処理時間維持 ・均一化開発結果の適用 上記統合により H24 年度達 成を見込む
PLD 法 高強度線材 MOD 法 高強度線材		 ・高 <i>I</i>。化 ・高速化 ・長尺安定化 	 ・高 L 線材作製のコスト削減 と長尺化を他テーマの成果 とあわせることにより、H24 年度達成を見込む
MOCVD 法 高強度基板・ 中間層		 500 A/cm-w @77 K, s.f.短尺 500 A/cm-w @77 K, s.f.の長 尺化 (200 m) 	MOCVD 法による超電導層 厚膜化の成果を基に、さらに 超電導層厚膜化に向けた基 板金属元素の拡散防止等の 中間層の適正化を行い、最終 目標を達成する。
高臨界電流化 対応基板・ 中間層		・長尺化(短尺 では高 <i>L</i> 達成)	・均一化テーマ開発成果の薄 肉基板上への適用により、 H24年度達成を見込む
PLD 法高臨界 電流線材作製 MOD 法高臨界 電流線材作製		・長尺化 ・高速化	 ・高 L 線材作製のコスト削減 と長尺化を他テーマの成果 とあわせることにより、H24 年度達成を見込む

表 2.4.4-3 最終目標とその見通し

引用論文リスト

- S. Lee, N. Chikumoto, T. Yokoyama, T. Machi, K. Nakao, and K. Tanabe, "Development of In-Plume Pulsed Laser Deposition of High-I_c GdBCO Films for Coated Conductors", IEEE Trans. Appl. Supercond. Vol. 19 No. 3 (2009) 3192-3195.
- (2) D. M. Feldmann, T. G. Holesinger, R. Feenstra, C. Cantoni, W. Zhang, M. Rupich, X. Li, J. H. Durrell, A. Gurevich and D. C. Larbalestier, "Mechanisms for enhanced supercurrent across meandered grain boundaries in high-temperature superconductors", J. Appl. Phys., 102 (2007) 083912.
- (3) M. Miura, T. Kato, M. Yoshizumi, Y. Yamada, T. Izumi, Y. Shiohara, T. Hirayama, "Enhancement of Flux Pinning in Y1-xSmxBa1.5Cu3Oy Coated Conductors with Nanoparticles" Appl. Phys. Exp. Vol.1 No.5 (2008) 51701.